• Title/Summary/Keyword: local instability

Search Result 212, Processing Time 0.025 seconds

Stability Analysis of Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 파이프의 안정성 해석)

  • Ahn, Tae-Su;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.865-868
    • /
    • 2006
  • In this paper, a dynamic behavior(natural frequency) of a cracked simply supported pipe conveying fluid is presented. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode (modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This study will contribute to the safety test and stability estimation of structures of a cracked pipe conveying fluid.

  • PDF

Crack Effects on Dynamic Stability of Elastically Restrained Valve-pipe System (탄성 지지된 밸브 배관계의 안정성에 미치는 크랙의 영향)

  • Hur, Kwan-Do;Son, In-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.79-86
    • /
    • 2011
  • The dynamic instability and natural frequency of elastically restrained pipe conveying fluid with the attached mass and crack are investigated. The pipe system with a crack is modeled by using extended Hamilton's Principle with consideration of bending energy. The crack on the pipe system is represented by a local flexibility matrix and two undamaged beam segments are connected. In this paper, the influence of attached mass, its position and crack on the dynamic stability of a elastically restrained pipe system is presented. Also, the critical flow velocity for the flutter and divergence due to the variation in the position and stiffness of supported spring is studied. Finally, the critical flow velocities and stability maps of the pipe conveying fluid with the attached mass are obtained by the changing parameters.

Stability Analysis of Cracked Cantilever Beam Subjected to Follower Force (종동력을 받는 크랙 외팔 보의 안정성 해석)

  • Ahn, Sung-Jin;Yoon, Han-Ik;Son, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.215-218
    • /
    • 2007
  • In this paper a dynamic behavior(natural frequency) of a cracked cantilever beam subjected to follower force is presented. In addition, an analysis of the flutter and buckling instability of a cracked cantilever beam subjected to a follower compressive load is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter insstability based on the variation of the first two resonant frequencies of the beam. Besides, the effect of the crack's intensity and location on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

  • PDF

Spring Position and Stiffness Effect on the Dynamic Stability of Elastically Restrained Cantilevered Beams under a Follower Force (종동력을 받는 탄성지지된 외팔보의 동적 안정성에 미치는 스프링위치와 상수의 영향)

  • 류봉조;권경우;명태식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1496-1502
    • /
    • 1994
  • The influences of spring position and spring stiffness on the critical force of a cantilevered beam subjected to a follower force are investigated. The spring attatched to the beam is assumed to be a translational one and can be located at arbitrary positions of the beam as it has not been assumed so far. The effects of transeverse shear deformation and rotary intertia of the beam are also included in this analysis. The charateristic equation for the system is derived and a finite element model of the beam using local coordinates is formulated through extended Hamilton's principle. It is found that when the spring is located at position less than that of 0.5L, the flutter type instability only exists. It is shown that the spring position approaches to the free end of the beam from its midpoint, instability type is changed from flutter to divergence through the jump phenomina according to the increase of spring stiffness.

A Study on the Dynamic Stability of a Flexible Missile with Mass Variation (질량변화를 갖는 유연한 미사일의 동적 안정성에 관한 연구)

  • Ryu, Bong-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.4
    • /
    • pp.107-117
    • /
    • 1991
  • The dynamic stability problem of nonconservative system is one of the important problems. In this study, flexible missile with mass variation is regarded as a free Timoshenko beam subjected to a controlled follower force. The stability was studied numerically through the finite element method. Through the study, the obtained results are as follows: [1] Without force direction control (1) In the case of no mass reduction, the existence of concentrated mass increases critical follower force. (2) Mass reduction rate of the beam slightly effects on the change of critical follower force. [2] With force direction control (1) Shear deformation parameter S contributes insignificantly to the force at instability when $S{\geq}10^4$. (2) With mass variation, increase of concentrated mass increases critical follower force at instbility. (3) The type of promary instability is determined by the sensor location.

  • PDF

Dynamic Properties of Outwardly Propagating Spherical Hydrogen-Air Flames at High Temperatures and Pressures

  • Kwon, Oh-Chae
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.325-334
    • /
    • 2004
  • Computational experiments on fundamental un stretched laminar burning velocities and flame response to stretch (represented by the Markstein number) of hydrogen-air flames at high temperatures and pressures were conducted in order to understand the dynamics of the flames including hydrogen as an attractive energy carrier in conditions encountered in practical applications such as internal combustion engines. Outwardly propagating spherical premixed flames were considered for a fuel-equivalence ratio of 0.6, pressures of 5 to 50 atm, and temperatures of 298 to 1000 K. For these conditions, ratios of unstretched-to-stretched laminar burning velocities varied linearly with flame stretch (represented by the Karlovitz number), similar to the flames at normal temperature and normal to moderately elevated pressures, implying that the "local conditions" hypothesis can be extended to the practical conditions. Increasing temperatures tended to reduce tendencies toward preferential-diffusion instability behavior (increasing the Markstein number) whereas increasing pressures tended to increase tendencies toward preferential-diffusion instability behavior (decreasing the Markstein number).

A Study on Decentralized under Voltage Load Shedding Scheme for Preventing Wide-area Black Out (광역정전 예방을 위한 분산형 부하 제어 방안에 대한 연구)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • An electric power system sometimes fails because of disturbances that occur unexpectedly, such as the uncontrolled loss of load that developed from cascading blackout. Which make stability through a little of under voltage load shedding should work. The development of phasor measurement unit(PMU) makes network supervision possible. The information obtained from PMU is synchronized by global positioning system(GPS). There are many real-time algorithms which are monitoring the voltage stability. This paper presents the study on the VILS(Voltage Instability Load Shedding) using PMU data. This algorithm computes Voltage Stability Margin Index(VSMI) continuously to track the voltage stability margin at local bus level. The VSMI is expressed as active and reactive power. The VSMI is used as an criterion for load shedding. In order to examine the algorithm is effective, applied to KEPCO system.

Influence of a Crack on Stability of Pipe Conveying Fluid (유체유동 파이프의 안정성에 미치는 크랙의 영향)

  • Ahn, Sung-Jin;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.254-257
    • /
    • 2006
  • In this paper a dynamic behavior(natural frequency) of a cracked cantilever and simply supported pipe conveying fluid is presented. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid subjected to a follower compressive load is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

  • PDF

Stability Analysis of Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 파이프의 안정성 해석)

  • Son, In-Soo;Ahn, Tae-Su;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.10-16
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid is investigated. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode(modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Galerkin method. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This results of study will contribute to the safety test and a stability estimation of the structures of a cracked pipe conveying fluid.

CRITICAL SPEED ANALYSIS OF JUDDERING DUE TO CHANGE IN SURFACE TEMPERATURE OF DISK BRAKE

  • Kim, M.G.;Cho, C.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.697-702
    • /
    • 2006
  • The change in the critical speed due to surface temperature of automotive disk brakes may be analyzed both theoretically as well as experimentally. Juddering of disk brakes is closely related to its critical speed. In analyzing the critical speed, if $\sigma$ is positive, Disk develops TEI(Thermo-Elastic Instability) resulting in juddering in disk brakes. And $\sigma$ is affected not only by the critical speed but also by the initial temperature of disk surface. As the initial temperature of the disk surface rises, the critical speed decreases and juddering is developed more easily. Also, when hot spots are developed by TEI, they show large temperature difference in small local range.