• Title/Summary/Keyword: load uncertainty

Search Result 321, Processing Time 0.027 seconds

Bayesian model updating for the corrosion fatigue crack growth rate of Ni-base alloy X-750

  • Yoon, Jae Young;Lee, Tae Hyun;Ryu, Kyung Ha;Kim, Yong Jin;Kim, Sung Hyun;Park, Jong Won
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.304-313
    • /
    • 2021
  • Nickel base Alloy X-750, which is used as fastener parts in light-water reactor (LWR), has experienced many failures by environmentally assisted cracking (EAC). In order to improve the reliability of passive components for nuclear power plants (NPP's), it is necessary to study the failure mechanism and to predict crack growth behavior by developing a probabilistic failure model. In this study, The Bayesian inference was employed to reduce the uncertainties contained in EAC modeling parameters that have been established from experiments with Alloy X-750. Corrosion fatigue crack growth rate model (FCGR) was developed by fitting into Paris' Law of measured data from the several fatigue tests conducted either in constant load or constant ΔK mode. These parameters characterizing the corrosion fatigue crack growth behavior of X-750 were successfully updated to reduce the uncertainty in the model by using the Bayesian inference method. It is demonstrated that probabilistic failure models for passive components can be developed by updating a laboratory model with field-inspection data, when crack growth rates (CGRs) are low and multiple inspections can be made prior to the component failure.

Temperature-dependent axial mechanical properties of Zircaloy-4 with various hydrogen amounts and hydride orientations

  • Bang, Shinhyo;Kim, Ho-a;Noh, Jae-soo;Kim, Donguk;Keum, Kyunghwan;Lee, Youho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1579-1587
    • /
    • 2022
  • The effects of hydride amount (20-850 wppm), orientation (circumferential and radial), and temperature (room temperature, 100 ℃, 200 ℃) on the axial mechanical properties of Zircaloy-4 cladding were comprehensively examined. The fraction of radial hydride fraction in the cladding was quantified using PROPHET, an in-house radial hydride fraction analysis code. Uniaxial tensile tests (UTTs) were conducted at various temperatures to obtain the axial mechanical properties. Hydride orientation has a limited effect on the axial mechanical behavior of hydrided Zircaloy-4 cladding. Ultimate tensile stress (UTS) and associated uniform elongation demonstrated limited sensitivity to hydride content under UTT. Statistical uncertainty of UTS was found small, supporting the deterministic approach for the load-failure analysis of hydrided Zircaloy-4 cladding. These properties notably decrease with increasing temperature in the tested range. The dependence of yield strength on hydrogen content differed from temperature to temperature. The ductility-related parameters, such as total elongation, strain energy density (SED), and offset strain decrease with increasing hydride contents. The abrupt loss of ductility in UTT was found at ~700 wppm. Demonstrating a strong correlation between total elongation and offset strain, SED can be used as a comprehensive measure of ductility of hydrided zirconium alloy.

Optimal Hierarchical Design Methodology for AESA Radar Operating Modes of a Fighter (전투기 AESA 레이더 운용모드의 최적 계층구조 설계 방법론)

  • Heungseob Kim;Sungho Kim;Wooseok Jang;Hyeonju Seol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.281-293
    • /
    • 2023
  • This study addresses the optimal design methodology for switching between active electronically scanned array (AESA) radar operating modes to easily select the necessary information to reduce pilots' cognitive load and physical workload in situations where diverse and complex information is continuously provided. This study presents a procedure for defining a hidden Markov chain model (HMM) for modeling operating mode changes based on time series data on the operating modes of the AESA radar used by pilots while performing mission scenarios with inherent uncertainty. Furthermore, based on a transition probability matrix (TPM) of the HMM, this study presents a mathematical programming model for proposing the optimal structural design of AESA radar operating modes considering the manipulation method of a hands on throttle-and-stick (HOTAS). Fighter pilots select and activate the menu key for an AESA radar operation mode by manipulating the HOTAS's rotary and toggle controllers. Therefore, this study presents an optimization problem to propose the optimal structural design of the menu keys so that the pilot can easily change the menu keys to suit the operational environment.

Performance Analysis of Load Control Model for Navigation/Guidance System on Flying Object (비행 물체의 유도제어 시스템 설계를 위한 하중(중력수) 제어 모델의 성능분석)

  • Wang, Hyun-Min;Woo, Kwang-Joon;Huh, Kyung-Moo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.87-96
    • /
    • 2009
  • In conventional method, flight model is discribed to differential equation by linealization of nonlinear object motion equation. As state equation from differential equation of moving object, the controller is designed by transfer functions of each module under discrimination of stability criteria. But this conventional method is designed under limitation of nonlinearity from object's shape and speed. In other word, The greater part of guidance/navigation system was satisfied with the result of good performance for normal figure of flight object, not sudden changed flight condition, not high speed. But it is not able to give full play to its ability on flight object which has abnormal figure, sudden changeable motion, high speed. Therefore, in this paper was presented performance analysis of load control model for navigation/guidance system on flying object being uncertainty, non-linear like abnormal figure, sudden changeable motion, high speed and is presented method of trajectory control(controllability) ahead of controllability and stability to achieve flight mission. In other word, this paper shows the first step of Min-design method and flight control model.

Acquisition of Watershed-based Pollution Source Information using Spatial Distributed Geo-Information (분포형 공간정보를 이용한 유역단위 오염원정보 구축)

  • Bae, Myoung-Soon;Ha, Sung-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.215-223
    • /
    • 2006
  • The Total Maximum Daily Load(TMDL) Act just implemented as a new tool of watershed based water quality management, in Korea. Thus, there are a number of pending questions to resolve for successful settlement of the TMDL. The allocation of pollution source is a exceedingly sensitive issue on local development planning. The simple area-based allocation (SAA) is conventional method to allocate the administrational pollution information to watershed based information. The SAA has a limitation that it can't consider the characteristics of spatial distribution of pollution source and it has caused more uncertainty of TMDL. This study was performed to reduce the uncertainty of watershed-based pollution information using the spatial distribution-based allocation(SDA). In the specific area where pollution source is concentrated such as urbanized region, it has been certified that SDA could reduce a tolerance of pollution information dramatically. As a result of study, SDA is expected a effective tool for TMDL and to solve the conflict between development and protection.

  • PDF

At-site Low Flow Frequency Analysis Using Bayesian MCMC: I. Theoretical Background and Construction of Prior Distribution (Bayesian MCMC를 이용한 저수량 점 빈도분석: I. 이론적 배경과 사전분포의 구축)

  • Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.1
    • /
    • pp.35-47
    • /
    • 2008
  • The low flow analysis is an important part in water resources engineering. Also, the results of low flow frequency analysis can be used for design of reservoir storage, water supply planning and design, waste-load allocation, and maintenance of quantity and quality of water for irrigation and wild life conservation. Especially, for identification of the uncertainty in frequency analysis, the Bayesian approach is applied and compared with conventional methodologies in at-site low flow frequency analysis. In the first manuscript, the theoretical background for the Bayesian MCMC (Bayesian Markov Chain Monte Carlo) method and Metropolis-Hasting algorithm are studied. Two types of the prior distribution, a non-data- based and a data-based prior distributions are developed and compared to perform the Bayesian MCMC method. It can be suggested that the results of a data-based prior distribution is more effective than those of a non-data-based prior distribution. The acceptance rate of the algorithm is computed to assess the effectiveness of the developed algorithm. In the second manuscript, the Bayesian MCMC method using a data-based prior distribution and MLE(Maximum Likelihood Estimation) using a quadratic approximation are performed for the at-site low flow frequency analysis.

Probabilistic Optimization for Improving Soft Marine Ground using a Low Replacement Ratio (해상 연약지반의 저치환율 개량에 대한 확률론적 최적화)

  • Han, Sang-Hyun;Kim, Hong-Yeon;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.485-495
    • /
    • 2016
  • To reinforce and improve the soft ground under a breakwater while using materials efficiently, the replacement ratio and leaving periods of surcharge load are optimized probabilistically. The results of Bayesian updating of the random variables using prior information decrease uncertainty by up to 39.8%, and using prior information with more samples results in a sharp decrease in uncertainty. Replacement ratios of 15%-40% are analyzed using First Order Reliability Method and Monte Carlo simulation to optimize the replacement ratio. The results show that replacement ratios of 20% and 25% are acceptable at the column jet grouting area and the granular compaction pile area, respectively. Life cycle costs are also compared to optimize the replacement ratios within allowable ranges. The results show that a range of 20%-30% is the most economical during the total life cycle. This means that initial construction cost, maintenance cost and failure loss cost are minimized during total life cycle. Probabilistic analysis for leaving periods of shows that three months acceptable. Design optimization with respect to life cycle cost is important to minimize maintenance costs and retain the performance of the structures for the required period. Therefore, more case studies that consider the maintenance costs of soil structures are necessary to establish relevant design codes.

FEM-based Seismic Reliability Analysis of Real Structural Systems (실제 구조계의 유한요소법에 기초한 지진 신뢰성해석)

  • Huh Jung-Won;Haldar Achintya
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.171-185
    • /
    • 2006
  • A sophisticated reliability analysis method is proposed to evaluate the reliability of real nonlinear complicated dynamic structural systems excited by short duration dynamic loadings like earthquake motions by intelligently integrating the response surface method, the finite element method, the first-order reliability method, and the iterative linear interpolation scheme. The method explicitly considers all major sources of nonlinearity and uncertainty in the load and resistance-related random variables. The unique feature of the technique is that the seismic loading is applied in the time domain, providing an alternative to the classical random vibration approach. The four-parameter Richard model is used to represent the flexibility of connections of real steel frames. Uncertainties in the Richard parameters are also incorporated in the algorithm. The laterally flexible steel frame is then reinforced with reinforced concrete shear walls. The stiffness degradation of shear walls after cracking is also considered. The applicability of the method to estimate the reliability of real structures is demonstrated by considering three examples; a laterally flexible steel frame with fully restrained connections, the same steel frame with partially restrained connections with different rigidities, and a steel frame reinforced with concrete shear walls.

A Study on LRFD Reliability Based Design Criteria of RC Flexural Members (R.C. 휨부재(部材)의 L.R.F.D. 신뢰성(信賴性) 설계기준(設計基準)에 관한 연구(研究))

  • Cho, Hyo Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.21-32
    • /
    • 1981
  • Recent trends in design standards development in some European countries and U.S.A. have encouraged the use of probabilistic limit sate design concepts. Reliability based design criteria such as LSD, LRFD, PBLSD, adopted in those advanced countries have the potentials that they afford for symplifying the design process and placing it on a consistent reliability bases for various construction materials. A reliability based design criteria for RC flexural members are proposed in this study. Lind-Hasofer's invariant second-moment reliability theory is used in the derivation of an algorithmic reliability analysis method as well as an iterative determination of load and resistance factors. In addition, Cornell's Mean First-Order Second Moment Method is employed as a practical tool for the approximate reliability analysis and the derivation of design criteria. Uncertainty measures for flexural resistance and load effects are based on the Ellingwood's approach for the evaluation of uncertainties of loads and resistances. The implied relative safety levels of RC flexural members designed by the strength design provisions of the current standard code were evaluated using the second moment reliability analysis method proposed in this study. And then, resistance and load factors corresponding to the target reliability index(${\beta}=4$) which is considered to be appropriate level of reliability considering our practices are calculated by using the proposed methods. These reliability based factors were compared to those specified by our current ultimate strength design provisions. It was found that the reliability levels of flexural members designed by current code are not appropriate, and the code specified resistance and load factors were considerably different from the reliability based resistance and load factors proposed in this study.

  • PDF

Prediction of the Intensity of Vibration Around the Crossing Part of Manganese Turnout (망간분기기 크로싱부 인근의 진동 발생수준 예측)

  • Eum, Ki-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.61-66
    • /
    • 2008
  • In railroad operation, turnout is the device designed to provide very critical functions of moving the train to the neighboring rail. It's the only movable section among the rail and track equipment, which has a complicated structure and as rapid movement between the wheel and rail during operation is unavoidable, the safety and the vibration caused by the impact load of the passing train becomes always the major concern. Response to rail vibration tends to vary depending on physical properties of the rail, rail base and the ground, making it difficult to estimate the quantitative outcome through the measurement. Thus, experimental or empirical approach, rather than an analytic method, has been more commonly employed to deal with the ground vibration. To predict the vibration of the turnout, an experimental value and the measured values are applied in parallel to the factors with a high degree of uncertainty. This study hence was intended to compare and analyze the vibration values measured at the crossing part of manganese turnout by type of train and turnout and distance, as well as predict the intensity of vibration generated at the crossing part of manganese turnout when tilting train accelerates.