DOI QR코드

DOI QR Code

Optimal Hierarchical Design Methodology for AESA Radar Operating Modes of a Fighter

전투기 AESA 레이더 운용모드의 최적 계층구조 설계 방법론

  • Heungseob Kim (Department of Industrial and Systems Engineering, Changwon National University) ;
  • Sungho Kim (Department of Systems Engineering, Korea Air Force Academy) ;
  • Wooseok Jang (Division of Data Analysis, Korea Institute of Science and Technology Information (KISTI)) ;
  • Hyeonju Seol (School of Integrated National Security, Chungnam National University)
  • 김흥섭 (창원대학교 산업시스템공학과) ;
  • 김성호 (공군사관학교 시스템공학과) ;
  • 장우석 (한국과학기술정보연구원(KISTI) 데이터분석본부) ;
  • 설현주 (충남대학교 국가안보융합학부)
  • Received : 2023.11.16
  • Accepted : 2023.12.07
  • Published : 2023.12.31

Abstract

This study addresses the optimal design methodology for switching between active electronically scanned array (AESA) radar operating modes to easily select the necessary information to reduce pilots' cognitive load and physical workload in situations where diverse and complex information is continuously provided. This study presents a procedure for defining a hidden Markov chain model (HMM) for modeling operating mode changes based on time series data on the operating modes of the AESA radar used by pilots while performing mission scenarios with inherent uncertainty. Furthermore, based on a transition probability matrix (TPM) of the HMM, this study presents a mathematical programming model for proposing the optimal structural design of AESA radar operating modes considering the manipulation method of a hands on throttle-and-stick (HOTAS). Fighter pilots select and activate the menu key for an AESA radar operation mode by manipulating the HOTAS's rotary and toggle controllers. Therefore, this study presents an optimization problem to propose the optimal structural design of the menu keys so that the pilot can easily change the menu keys to suit the operational environment.

Keywords

Acknowledgement

This research was supported by Changwon National University in 2023~2024.

References

  1. Alluisi, E.A. and Morgan, B.B., Engineering Psychology and Human Performance, Annual Review of Psychology, 1976, Vol. 27, No. 1, pp. 305-330.  https://doi.org/10.1146/annurev.ps.27.020176.001513
  2. Alppay, C. and Bayazit, N., An Ergonomics Based Design Research Method for the Arrangement of Helicopter Flight Instrument Panels, Applied Ergonomics, 2015, Vol. 51, pp. 85-101.  https://doi.org/10.1016/j.apergo.2015.04.011
  3. Defense Agency for Technology and Quality, Defense science and technology development trend and level (Vol. 2. Surveillance and reconnaissance | Public version), 2016. 
  4. Dehais, F., Causse, M., and Pastor, J., Embedded eye tracker in a real aircraft: new perspectives on pilot/aircraft interaction monitoring, In Proceedings from The 3rd International Conference on Research in Air Transportation, Fairfax, USA: Federal Aviation Administration, 2008. 
  5. Derefeldt, G., Skinnars, O., Alfredson, J., Eriksson, L., Andersson, P., Westlund, J., and Santesson, R., Improvement of tactical situation awareness with colour-coded horizontal-situation displays in combat aircraft, Displays, 1999, Vol. 20, No. 4, pp. 171-184.  https://doi.org/10.1016/S0141-9382(99)00022-0
  6. Diego-Mas, J.A., Garzon-Leal, D., Poveda-Bautista, R., and Alcaide-Marzal, J., User-interfaces Layout Optimization Using Eye-tracking, Mouse Movements and Genetic Algorithms, Applied Ergonomics, 2019, Vol. 78, pp. 197-209.  https://doi.org/10.1016/j.apergo.2019.03.004
  7. Elbert, K.K., Kroemer, H.B., and Hoffman, A.D.K., Ergonomics: How to Design for Ease and Efficiency, Academic Press, 2018. 
  8. Gajos, K.Z., Czerwinski, M., Tan, D.S., and Weld, D.S., Exploring the Design Space for Adaptive Graphical User Interfaces, In Proceedings of the Working Conference on Advanced Visual Interfaces, 2006, pp. 201-208. 
  9. Han, H.-Y., Introduction to Pattern Recognition: Non-linear Learning with MATLAB labs (Revisions), Hanbit-media, 2009, pp. 430-479. 
  10. Hayashi, M., Beutter, B., and McCann, R.S., Hidden Markov model analysis for space shuttle crewmembers' scanning behavior, In 2005 IEEE International Conference on Systems, Man and Cybernetics, 2005, Vol. 2, pp. 1615-1622. 
  11. Kantowitz, B.H. and Sorkin, R.D., Human Factors: Understanding People-system Relationships, Wiley, New York, 1983. 
  12. Kumar, S. and Saxena, V., Markov Chain Application in Object-Oriented Software Designing, International Journal of Computer Applications, 2013, Vol. 69, No. 10, pp. 17-22.  https://doi.org/10.5120/11878-7687
  13. Lim, Y., Gardi, A., Sabatini, R., Ramasamy, S., Kistan, T., Ezer, N., and Bolia, R., Avionics Human-machine Interfaces and Interactions for Manned and Unmanned Aircraft, Progress in Aerospace Sciences, 2018, Vol. 102, pp. 1-46.  https://doi.org/10.1016/j.paerosci.2018.05.002
  14. Lin, C.J. and Wu, C., Improved link analysis method for user interface design-modified link table and optimisation-based algorithm, Behaviour and Information Technology, 2010, Vol. 29, No. 2, pp. 199-216.  https://doi.org/10.1080/01449290903233892
  15. Liouane, Z., Lemlouma, T., Roose, P., Weis, F., and Hassani, M., A Markovian-based approach for daily living activities recognition, arXiv preprint arXiv:1603.03251, 2016. 
  16. Lockheed Martin, Republic of Korea F-35 Lightning II: AN/APG-81 Radar, 2017. 
  17. Martin, C., Cegarra, J., and Averty, P., Analysis of mental workload during en-route air traffic control task execution based on eye-tracking technique, In Engineering Psychology and Cognitive Ergonomics: 9th International Conference, EPCE 2011, 2011, pp. 592-597. 
  18. Mohanavelu, K., Poonguzhali, S., Ravi, D., Singh, P. K., Mahajabin, M., Ramachandran, K., and Jayaraman, S., Cognitive Workload Analysis of Fighter Aircraft Pilots in Flight Simulator Environment, Defence Science Journal, 2020, Vol. 70 No. 2, pp. 131-139.  https://doi.org/10.14429/dsj.70.14539
  19. Nachreiner, F., Nickel, P., and Meyer, I., Human Factors in Process Control Systems: The Design of Human-machine Interfaces, Safety Science, 2006, Vol. 44, No. 1, pp. 5-26.  https://doi.org/10.1016/j.ssci.2005.09.003
  20. Office of the under secretary of defense for acquisition and technology, Report of the Defense Science Board Task Force on Future DoD airborne high-frequency radar needs/resources, 2001. 
  21. Oulasvirta, A., Optimizing user interfaces for human performance. In Intelligent Human Computer Interaction: 9th International Conference, IHCI 2017, 2017, pp. 3-7. 
  22. Oulasvirta, A., Kristensson, P. O., Bi, X., and Howes, A., Computational interaction, 2018, Oxford University Press. 
  23. Ross, S.M., Introduction to probability models, Eleventh ed., Academic Press, 2014, pp. 183-276. 
  24. Stainer, M.J., Scott-Brown, K.C., and Tatler, B.W., Looking for trouble: A description of oculomotor search strategies during live CCTV operation, Frontiers in Human Neuroscience, 2013, Vol. 7, p. 615. 
  25. Starke, S., Cooke, N., Howes, A., Morar, N., and Baber, C., Visual sampling in a road traffic management control room task, In International Conference on Ergonomics and Human Factors, 2015, pp. 503-511. 
  26. Todi, K., Jokinen, J., Luyten, K., and Oulasvirta, A., Familiarisation: Restructuring layouts with visual learning models, In 23rd International Conference on Intelligent User Interfaces, 2018, pp. 547-558. 
  27. Wedel, M., Improving AD Interfaces with Eye Tracking, The Wiley Handbook of Human Computer Interaction, 2018, Vol. 2, pp. 889-907. 
  28. YTN News, Lockheed Martin is in charge of KF-16 performance improvement, 2015.12.16.