Acknowledgement
This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP), the Ministry of Trade, Industry & Energy (MOTIE) (No. 20181710201770), and the Nuclear Safety Security Commission (NSSC) of the Republic of Korea (No. 2003018).
References
- A.T. Motta, L. Capolungo, L.-Q. Chen, M.N. Cinbiz, M.R. Daymond, D.A. Koss, E. Lacroix, G. Pastore, P.-C.A. Simon, M.R. Tonks, Hydrogen in zirconium alloys: a review, J. Nucl. Mater. 518 (2019) 440-460. https://doi.org/10.1016/j.jnucmat.2019.02.042
- Z. Duan, H. Yang, Y. Satoh, K. Murakami, S. Kano, Z. Zhao, J. Shen, H. Abe, Current status of materials development of nuclear fuel cladding tubes for light water reactors, Nucl. Eng. Des. 316 (2017) 131-150. https://doi.org/10.1016/j.nucengdes.2017.02.031
- J.J. Kearns, Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4, J. Nucl. Mater. 22 (1967) 292-303. https://doi.org/10.1016/0022-3115(67)90047-5
- E. Lacroix, A.T. Motta, J.D. Almer, Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy, J. Nucl. Mater. 509 (2018) 162-167. https://doi.org/10.1016/j.jnucmat.2018.06.038
- M.P. Puls, S.-Q. Shi, J. Rabier, Experimental studies of mechanical properties of solid zirconium hydrides, J. Nucl. Mater. 336 (2005) 73-80. https://doi.org/10.1016/j.jnucmat.2004.08.016
- F. Yunchang, D.A. Koss, The influence of multiaxial states of stress on the hydrogen embrittlement of zirconium alloy sheet, Metal. Trans. A 16 (1985) 675-681. https://doi.org/10.1007/BF02814242
- M.R. Louthan Jr., G.R. Caskey Jr., J.A. Donovan, D.E. Rawl Jr., Hydrogen embrittlement of metals, Mater. Sci. Eng. 10 (1972) 357-368. https://doi.org/10.1016/0025-5416(72)90109-7
- K.J. Geelhood, Fuel performance considerations and data needs for burnup above 62 GWd/MTU, Pacific Northwest Natl. Lab. (2019). PNNL-29368.
- H.C. Chu, S.K. Wu, R.C. Kuo, Hydride reorientation in Zircaloy-4 cladding, J. Nucl. Mater. 373 (2008) 319-327, 1-3. https://doi.org/10.1016/j.jnucmat.2007.06.012
- H.C. Chu, S.K. Wu, K.F. Chien, R.C. Kuo, Effect of radial hydrides on the axial and hoop mechanical properties of Zircaloy-4 cladding, J. Nucl. Mater. 362 (2007) 93-103, 1. https://doi.org/10.1016/j.jnucmat.2006.11.008
- R.P. Marshall, M.R. Louthan Jr., Tensile Properties Zircaloy with Oriented Hydrides, Du Pont de Nemours (EI) & Co. Savannah River Lab., 1962. No. TID-17372.
- S. Arsene, J.B. Bai, P. Bompard, Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor (PWR) and boiling-water reactor (BWR) zircaloy cladding tubes: part I. hydride embrittlement in stress-relieved, annealed, and recrystallized zircaloys at 20 C and 300 C, Metall. Mater. Trans. 34 (2003) 553-566, 3. https://doi.org/10.1007/s11661-003-0091-3
- M.C. Bilone, T.A. Burtseva, Z. Han, Y.Y. Liiu, Used Fuel Disposition Campaign Embrittlement and DBTT of High-Burnup PWR Fuel Cladding Alloys, Argonne Natl. Lab., 2014. ANL-13/16; FCRD-UFD-2013-000401.
- Spent Fuel Project Office, U.S. NRC, Cladding Considerations for the Transportation and Storage of Spent Fuel, U.S. NRC, 2003. ISG-11 3.
- D. Kim, D. Kim, Y. Lee, Facilitate measurement of RHF by using PROPHET and its application, in: Transactions of the Korean Radioactive Waste Society Spring Meeting, 2021.
- Gas transmission and distribution piping systems, ASME B31.8, American Society of Mechanical Engineers (2010).
- Y. Ding, J.-.S. Kim, H. Kim, C. Won, S. Choi, S.H. Park, J. Yoon, Evaluation of anisotropic deformation behaviors in H-charged Zircaloy-4 tube, J. Nucl. Mater. 508 (2018) 440-450. https://doi.org/10.1016/j.jnucmat.2018.05.083
- K.B. Colas, A.T. Motta, M.R. Daymond, J.D. Almer, Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction, J. Nucl. Mater. 440 (2013) 586-595. https://doi.org/10.1016/j.jnucmat.2013.04.047
- P.A. Raynaud, D.A. Koss, A.T. Motta, Crack growth in the through-thickness direction of hydrided thin-wall Zircaloy sheet, J. Nucl. Mater. 420 (2012) 69-82. https://doi.org/10.1016/j.jnucmat.2011.09.005
- P.-C.A. Simon, C. Frank, L.-Q. Chen, M.R. Daymond, M.R. Tonks, A.T. Motta, Quantifying the effect of hydride microstructure on zirconium alloys embrittlement using image analysis, J. Nucl. Mater. 547 (2021), 152817. https://doi.org/10.1016/j.jnucmat.2021.152817
- U.S. NRC, Testing for Post Quenching Ductility, U.S. NRC, 2014. DG-1262.
- J.R. Davis, in: Tensile Testing, second ed., ASM international, 2004.
- J.B. Bai, C. Prioul, D. Francois, Hydride embrittlement in Zircaloy-4 plate: Part I. Influence of microstructure on the hydride embrittlement in Zircaloy-4 at 20 C and 350 C, Metall. Mater. Trans. 25 (1994) 1185-1197, 6. https://doi.org/10.1007/BF02652293
- H. Lee, K. Kim, J.-S. Kim, Y.-S. Kim, Effects of hydride precipitation on the mechanical property of cold worked zirconium alloys in fully recrystallized condition, Nucl. Eng. Technol. 52 (2020) 352-359, 2. https://doi.org/10.1016/j.net.2019.07.032
- G.J. DeSalvo, Theory and structural design applications of weibull statistics, Westinghouse Electr. Corp. Astronucl. Lab. (1970). No. WANL-TME-2688.
- W. Weibull, Royal Swedish Acad. Eng Sci. Proc. 151 (1939) 1.
- K.V. Bury, Statistical Models in Applied Science, Wiley, 1975.
- R.H. Doremus, Fracture statistics: a comparison of the normal, Weibull, and Type I extreme value distributions, J. Appl. Phys. 54 (1983) 193-198, 1. https://doi.org/10.1063/1.331731
- R. Danzer, Some notes on the correlation between fracture and defect statistics: are Weibull statistics valid for very small specimens? J. Eur. Ceram. Soc. 26 (2006) 3043-3049, 15. https://doi.org/10.1016/j.jeurceramsoc.2005.08.021
- T.L. Sanders, K.D. Seager, P.R. Barrett, A.P. Malinauskas, R.E. Einziger, H. Jordan, T.A. Duffey, S.H. Sutherland, P.C. Reardon, A method for determining the spent-fuel contribution to transport cask containment requirements, Sandia Natl. Lab. (1992). SAND-90-2406; TTC-1019.
- S. Kim, J. Kang, Y. Lee, Comparison of hydride embrittlement of zircaloy-4 and Zr-Nb alloy cladding tubes, Proc. Korean Radioact. Waste Soc. (2021).
- Z. Hozer, Zoltan, C. Gyori, L. Matus, M. Horvath, Ductile-to-brittle transition of oxidised Zircaloy-4 and E110 claddings, J. Nucl. Mater. 373 (2008) 415-423, 1-3. https://doi.org/10.1016/j.jnucmat.2007.07.002
- EPRI, Application of Critical Strain Energy Density to Predicting High-Burnup Fuel Rod Failure, EPRI, 2005. EPRI-1011816.
- B. Almomani, Y.S. Chang, Failure probability assessment of SNF cladding transverse tearing under a hypothetical transportation accident, Nucl. Eng. Des. 379 (2021), 111265. https://doi.org/10.1016/j.nucengdes.2021.111265