DOI QR코드

DOI QR Code

Temperature-dependent axial mechanical properties of Zircaloy-4 with various hydrogen amounts and hydride orientations

  • Bang, Shinhyo (Department of Nuclear Engineering, Seoul National University) ;
  • Kim, Ho-a (Department of Nuclear Engineering, Hanyang University) ;
  • Noh, Jae-soo (Atomic Creative Technology Co., Ltd.) ;
  • Kim, Donguk (Department of Nuclear Engineering, Seoul National University) ;
  • Keum, Kyunghwan (Department of Nuclear Engineering, Seoul National University) ;
  • Lee, Youho (Department of Nuclear Engineering, Seoul National University)
  • Received : 2021.07.29
  • Accepted : 2021.11.07
  • Published : 2022.05.25

Abstract

The effects of hydride amount (20-850 wppm), orientation (circumferential and radial), and temperature (room temperature, 100 ℃, 200 ℃) on the axial mechanical properties of Zircaloy-4 cladding were comprehensively examined. The fraction of radial hydride fraction in the cladding was quantified using PROPHET, an in-house radial hydride fraction analysis code. Uniaxial tensile tests (UTTs) were conducted at various temperatures to obtain the axial mechanical properties. Hydride orientation has a limited effect on the axial mechanical behavior of hydrided Zircaloy-4 cladding. Ultimate tensile stress (UTS) and associated uniform elongation demonstrated limited sensitivity to hydride content under UTT. Statistical uncertainty of UTS was found small, supporting the deterministic approach for the load-failure analysis of hydrided Zircaloy-4 cladding. These properties notably decrease with increasing temperature in the tested range. The dependence of yield strength on hydrogen content differed from temperature to temperature. The ductility-related parameters, such as total elongation, strain energy density (SED), and offset strain decrease with increasing hydride contents. The abrupt loss of ductility in UTT was found at ~700 wppm. Demonstrating a strong correlation between total elongation and offset strain, SED can be used as a comprehensive measure of ductility of hydrided zirconium alloy.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP), the Ministry of Trade, Industry & Energy (MOTIE) (No. 20181710201770), and the Nuclear Safety Security Commission (NSSC) of the Republic of Korea (No. 2003018).

References

  1. A.T. Motta, L. Capolungo, L.-Q. Chen, M.N. Cinbiz, M.R. Daymond, D.A. Koss, E. Lacroix, G. Pastore, P.-C.A. Simon, M.R. Tonks, Hydrogen in zirconium alloys: a review, J. Nucl. Mater. 518 (2019) 440-460. https://doi.org/10.1016/j.jnucmat.2019.02.042
  2. Z. Duan, H. Yang, Y. Satoh, K. Murakami, S. Kano, Z. Zhao, J. Shen, H. Abe, Current status of materials development of nuclear fuel cladding tubes for light water reactors, Nucl. Eng. Des. 316 (2017) 131-150. https://doi.org/10.1016/j.nucengdes.2017.02.031
  3. J.J. Kearns, Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4, J. Nucl. Mater. 22 (1967) 292-303. https://doi.org/10.1016/0022-3115(67)90047-5
  4. E. Lacroix, A.T. Motta, J.D. Almer, Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy, J. Nucl. Mater. 509 (2018) 162-167. https://doi.org/10.1016/j.jnucmat.2018.06.038
  5. M.P. Puls, S.-Q. Shi, J. Rabier, Experimental studies of mechanical properties of solid zirconium hydrides, J. Nucl. Mater. 336 (2005) 73-80. https://doi.org/10.1016/j.jnucmat.2004.08.016
  6. F. Yunchang, D.A. Koss, The influence of multiaxial states of stress on the hydrogen embrittlement of zirconium alloy sheet, Metal. Trans. A 16 (1985) 675-681. https://doi.org/10.1007/BF02814242
  7. M.R. Louthan Jr., G.R. Caskey Jr., J.A. Donovan, D.E. Rawl Jr., Hydrogen embrittlement of metals, Mater. Sci. Eng. 10 (1972) 357-368. https://doi.org/10.1016/0025-5416(72)90109-7
  8. K.J. Geelhood, Fuel performance considerations and data needs for burnup above 62 GWd/MTU, Pacific Northwest Natl. Lab. (2019). PNNL-29368.
  9. H.C. Chu, S.K. Wu, R.C. Kuo, Hydride reorientation in Zircaloy-4 cladding, J. Nucl. Mater. 373 (2008) 319-327, 1-3. https://doi.org/10.1016/j.jnucmat.2007.06.012
  10. H.C. Chu, S.K. Wu, K.F. Chien, R.C. Kuo, Effect of radial hydrides on the axial and hoop mechanical properties of Zircaloy-4 cladding, J. Nucl. Mater. 362 (2007) 93-103, 1. https://doi.org/10.1016/j.jnucmat.2006.11.008
  11. R.P. Marshall, M.R. Louthan Jr., Tensile Properties Zircaloy with Oriented Hydrides, Du Pont de Nemours (EI) & Co. Savannah River Lab., 1962. No. TID-17372.
  12. S. Arsene, J.B. Bai, P. Bompard, Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor (PWR) and boiling-water reactor (BWR) zircaloy cladding tubes: part I. hydride embrittlement in stress-relieved, annealed, and recrystallized zircaloys at 20 C and 300 C, Metall. Mater. Trans. 34 (2003) 553-566, 3. https://doi.org/10.1007/s11661-003-0091-3
  13. M.C. Bilone, T.A. Burtseva, Z. Han, Y.Y. Liiu, Used Fuel Disposition Campaign Embrittlement and DBTT of High-Burnup PWR Fuel Cladding Alloys, Argonne Natl. Lab., 2014. ANL-13/16; FCRD-UFD-2013-000401.
  14. Spent Fuel Project Office, U.S. NRC, Cladding Considerations for the Transportation and Storage of Spent Fuel, U.S. NRC, 2003. ISG-11 3.
  15. D. Kim, D. Kim, Y. Lee, Facilitate measurement of RHF by using PROPHET and its application, in: Transactions of the Korean Radioactive Waste Society Spring Meeting, 2021.
  16. Gas transmission and distribution piping systems, ASME B31.8, American Society of Mechanical Engineers (2010).
  17. Y. Ding, J.-.S. Kim, H. Kim, C. Won, S. Choi, S.H. Park, J. Yoon, Evaluation of anisotropic deformation behaviors in H-charged Zircaloy-4 tube, J. Nucl. Mater. 508 (2018) 440-450. https://doi.org/10.1016/j.jnucmat.2018.05.083
  18. K.B. Colas, A.T. Motta, M.R. Daymond, J.D. Almer, Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction, J. Nucl. Mater. 440 (2013) 586-595. https://doi.org/10.1016/j.jnucmat.2013.04.047
  19. P.A. Raynaud, D.A. Koss, A.T. Motta, Crack growth in the through-thickness direction of hydrided thin-wall Zircaloy sheet, J. Nucl. Mater. 420 (2012) 69-82. https://doi.org/10.1016/j.jnucmat.2011.09.005
  20. P.-C.A. Simon, C. Frank, L.-Q. Chen, M.R. Daymond, M.R. Tonks, A.T. Motta, Quantifying the effect of hydride microstructure on zirconium alloys embrittlement using image analysis, J. Nucl. Mater. 547 (2021), 152817. https://doi.org/10.1016/j.jnucmat.2021.152817
  21. U.S. NRC, Testing for Post Quenching Ductility, U.S. NRC, 2014. DG-1262.
  22. J.R. Davis, in: Tensile Testing, second ed., ASM international, 2004.
  23. J.B. Bai, C. Prioul, D. Francois, Hydride embrittlement in Zircaloy-4 plate: Part I. Influence of microstructure on the hydride embrittlement in Zircaloy-4 at 20 C and 350 C, Metall. Mater. Trans. 25 (1994) 1185-1197, 6. https://doi.org/10.1007/BF02652293
  24. H. Lee, K. Kim, J.-S. Kim, Y.-S. Kim, Effects of hydride precipitation on the mechanical property of cold worked zirconium alloys in fully recrystallized condition, Nucl. Eng. Technol. 52 (2020) 352-359, 2. https://doi.org/10.1016/j.net.2019.07.032
  25. G.J. DeSalvo, Theory and structural design applications of weibull statistics, Westinghouse Electr. Corp. Astronucl. Lab. (1970). No. WANL-TME-2688.
  26. W. Weibull, Royal Swedish Acad. Eng Sci. Proc. 151 (1939) 1.
  27. K.V. Bury, Statistical Models in Applied Science, Wiley, 1975.
  28. R.H. Doremus, Fracture statistics: a comparison of the normal, Weibull, and Type I extreme value distributions, J. Appl. Phys. 54 (1983) 193-198, 1. https://doi.org/10.1063/1.331731
  29. R. Danzer, Some notes on the correlation between fracture and defect statistics: are Weibull statistics valid for very small specimens? J. Eur. Ceram. Soc. 26 (2006) 3043-3049, 15. https://doi.org/10.1016/j.jeurceramsoc.2005.08.021
  30. T.L. Sanders, K.D. Seager, P.R. Barrett, A.P. Malinauskas, R.E. Einziger, H. Jordan, T.A. Duffey, S.H. Sutherland, P.C. Reardon, A method for determining the spent-fuel contribution to transport cask containment requirements, Sandia Natl. Lab. (1992). SAND-90-2406; TTC-1019.
  31. S. Kim, J. Kang, Y. Lee, Comparison of hydride embrittlement of zircaloy-4 and Zr-Nb alloy cladding tubes, Proc. Korean Radioact. Waste Soc. (2021).
  32. Z. Hozer, Zoltan, C. Gyori, L. Matus, M. Horvath, Ductile-to-brittle transition of oxidised Zircaloy-4 and E110 claddings, J. Nucl. Mater. 373 (2008) 415-423, 1-3. https://doi.org/10.1016/j.jnucmat.2007.07.002
  33. EPRI, Application of Critical Strain Energy Density to Predicting High-Burnup Fuel Rod Failure, EPRI, 2005. EPRI-1011816.
  34. B. Almomani, Y.S. Chang, Failure probability assessment of SNF cladding transverse tearing under a hypothetical transportation accident, Nucl. Eng. Des. 379 (2021), 111265. https://doi.org/10.1016/j.nucengdes.2021.111265