• Title/Summary/Keyword: linear viscoelastic

Search Result 206, Processing Time 0.023 seconds

Shaking Table Test of a Structure with Added Viscoelastic Dampers (점탄성 감쇠기가 설치된 구조물의 진동대 실험)

  • Kim., Jin-Koo;Kwon., Young-Jip
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.197-203
    • /
    • 2001
  • This study presents the results of shaking table test of scaled model structures with added viscoelastic dampers, which are considered to be one of the most efficient means of upgrading existing structures against seismic loads. The experimental results were compared with those from analysis based on the linear modeling of viscoelastic dampers. The parameters obtained from free vibration test were utilized in the analysis. According to the results the added viscoelastic dampers turned out to be effective in reducing the responses of the model structures. It was also found that the analysis with linear modeling of viscoelastic dampers could simulate the test results accurately.

  • PDF

Particle-based Numerical Modeling of Linear Viscoelastic Materials using MPM based on FEM for Taylor Impact Simulations

  • Kim, See Jo
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.207-212
    • /
    • 2018
  • Taylor rod impact tests have been the subject of many theoretical and experimental investigations. This paper discusses the numerical methods for simulating the Taylor impact test, which is widely used to obtain constitutive equations and failure conditions under high-velocity collisions of materials. With this in mind, a particle-based MPM (material point method) for linear viscoelastic solid materials was implemented, and MPM simulations for viscoelastic deformation behavior were numerically verified and confirmed by comparing the MPM and FEM results. In addition, this modeling and numerical approach could be extended to more complex viscoelastic models for basic understanding and to analyze the deformation and fracture behavior of more complicated viscoelastic material systems.

Rheological Behavior of Viscoelastic Semi-Solid Ointment Base (Vaseline) in Oscillatory Shear Flow Fields (진동전단유동장에서 점탄성 반고형 연고기제(바셀린)의 레올로지 거동)

  • Song, Ki-Won;Chang, Gap-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Using a Rheometries Dynamic Analyzer (RDA II), the dynamic viscoelastic properties of a semi-solid ointment base (vaseline) in large amplitude oscillatory shear flow fields were measured over a temperature range of $25{\sim}45^{\circ}C$ and the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a wide range of angular frequencies. In this article, the nonlinear viscoelastic behavior was reported from the experimentally obtained data and the effect of temperature on this behavior was discussed in detail. In addition, the angular frequency and temperature dependencies of a linear viscoelastic behavior were explained. Finally, the applicability of a time-temperature superposition principle originally developed for polymeric materials was examined using a shift factor. Main results obtained from this study can be summarized as follows : (1) At very small strain amplitude region, vaseline shows a linear viscoelastic behavior independent of the imposed deformation magnitudes. Above a critical strain amplitude $({\gamma}_{0}=0.1{\sim}0.2%)$, however, vaseline exhibits a nonlinear viscoelastic behavior ; indicating that both the storage modulus and dynamic viscosity are sharply decreased with increasing deformation magnitude. (2) In large amplitude oscillatory shear flow fields, an elastic behavior (storage modulus) has a stronger strain amplitude dependence and begins to show a nonlinear behavior at a smaller strain amplitude region than does a viscous behavior (dynamic viscosity). (3) In small amplitude oscillatory shear flow fields, the storage modulus as well as the loss modulus are continuously increased as an increase in angular frequency and an elastic nature is always superior to a viscous behavior over a wide range of angular frequencies. (4) A time-temperature superposition principle can successfully be applicable to vaseline. This finding allows us to estimate the dynamic viscoelastic behavior of vaseline over an extraordinarily extended range (11 decades) of angular frequencies inaccessible from the experimentally measured range (4 decades).

Rheology of concentrated xanthan gum solutions: Oscillatory shear flow behavior

  • Song Ki-Won;Kuk Hoa-Youn;Chang Gap-Shik
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.67-81
    • /
    • 2006
  • Using a strain-controlled rheometer, the dynamic viscoelastic properties of aqueous xanthan gum solutions with different concentrations were measured over a wide range of strain amplitudes and then the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a broad range of angular frequencies. In this article, both the strain amplitude and concentration dependencies of dynamic viscoelastic behavior were reported at full length from the experimental data obtained from strain-sweep tests. In addition, the linear viscoelastic behavior was explained in detail and the effects of angular frequency and concentration on this behavior were discussed using the well-known power-law type equations. Finally, a fractional derivative model originally developed by Ma and Barbosa-Canovas (1996) was employed to make a quantitative description of a linear viscoelastic behavior and then the applicability of this model was examined with a brief comment on its limitations. Main findings obtained from this study can be summarized as follows: (1) At strain amplitude range larger than 10%, the storage modulus shows a nonlinear strain-thinning behavior, indicating a decrease in storage modulus as an increase in strain amplitude. (2) At strain amplitude range larger than 80%, the loss modulus exhibits an exceptional nonlinear strain-overshoot behavior, indicating that the loss modulus is first increased up to a certain strain amplitude(${\gamma}_0{\approx}150%$) beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (3) At sufficiently large strain amplitude range (${\gamma}_0>200%$), a viscous behavior becomes superior to an elastic behavior. (4) An ability to flow without fracture at large strain amplitudes is one of the most important differences between typical strong gel systems and concentrated xanthan gum solutions. (5) The linear viscoelastic behavior of concentrated xanthan gum solutions is dominated by an elastic nature rather than a viscous nature and a gel-like structure is present in these systems. (6) As the polymer concentration is increased, xanthan gum solutions become more elastic and can be characterized by a slower relaxation mechanism. (7) Concentrated xanthan gum solutions do not form a chemically cross-linked stable (strong) gel but exhibit a weak gel-like behavior. (8) A fractional derivative model may be an attractive means for predicting a linear viscoelastic behavior of concentrated xanthan gum solutions but classified as a semi-empirical relationship because there exists no real physical meaning for the model parameters.

Analysis of building frames with viscoelastic dampers under base excitation

  • Shukla, A.K.;Datta, T.K.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.71-87
    • /
    • 2001
  • A frequency domain response analysis is presented for building frames passively controlled by viscoelastic dampers, under harmonic ground excitation. Three different models are used to represent the linear dynamic force-deformation characteristics of viscoelastic dampers namely, Kelvin model, Linear hysteretic model and Maxwell model. The frequency domain solution is obtained by (i) an iterative pseudo-force method, which uses undamped mode shapes and frequencies of the system, (ii) an approximate modal strain energy method, which uses an equivalent modal damping of the system in each mode of vibration, and (iii) an exact method which uses complex frequency response function of the system. The responses obtained by three different methods are compared for different combinations of viscoelastic dampers giving rise to both classically and non-classically damped cases. In addition, the effect of the modelling of viscoelastic dampers on the response is investigated for a certain frequency range of interest. The results of the study are useful in appropriate modelling of viscoelastic dampers and in understanding the implication of using modal analysis procedure for building frames which are passively controlled by viscoelastic dampers against base excitation.

Non-linear vibration and stability analysis of a partially supported conveyor belt by a distributed viscoelastic foundation

  • Ghayesh, M.H.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.17-32
    • /
    • 2007
  • The main source of transverse vibration of a conveyor belt is frictional contact between pulley and belt. Also, environmental characteristics such as natural dampers and springs affect natural frequencies, stability and bifurcation points of system. These phenomena can be modeled by a small velocity fluctuation about mean velocity. Also, viscoelastic foundation can be modeled as the dampers and springs with continuous characteristics. In this study, non-linear vibration of a conveyor belt supported partially by a distributed viscoelastic foundation is investigated. Perturbation method is applied to obtain a closed form analytic solutions. Finally, numerical simulations are presented to show stiffness, damping coefficient, foundation length, non-linearity and mean velocity effects on location of bifurcation points, natural frequencies and stability of solutions.

Bifurcation Analysis of a Non-linear Hysteretic Oscillating System (비선형 히스테리시스 진동시스템의 분기해석)

  • 송덕근;최진권;장서일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.289-294
    • /
    • 2001
  • Three kinds of viscoelastic damper model, which has a non-linear spring as an element is studied analytically and numerically. The behavior of the damper model shows non-linear hysteresis curves which is qualitatively similar to those of real viscoelastic materials. The motion is governed by a non-linear constitutive equation and an additional equation of motion. Harmonic balance method is applied to get analytic solutions of the system. The frequency-response curves show that multiple solutions co-exist and that the jump phenomena can occur. In addition, it is shown that separate solution branch exists and that it can merge with the primary response curve. Saddle-node bifurcation sets explain the occurrences of such non-linear phenomena.

  • PDF

Bifurcation Analysis of a Non-linear Hysteretic Oscillating System (비선형 히스테리시스 진동시스템의 분기해석)

  • 장서일;송덕근;최진권
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.57-64
    • /
    • 2002
  • Three kinds of viscoelastic damper model, which has a non-linear spring as an element is studied analytically and numerically The behavior of the damper model shows non-linear hysteresis curves which is qualitatively similar to those of real viscoelastic materials. The motion is governed by a non-linear constitutive equation and an additional equation of motion. Harmonic balance method is applied to get analytical solutions of the system. The frequency-response curves sallow that multiple solutions co-exist and that the jump phenomena can occur. In addition, it is shown that separate solution branch exists and that it can merge with the primary response curve. Saddle-node bifurcation sets explain the occurrences of such non-linear Phenomena.

Nonlinear vibration analysis of viscoelastic laminated plates undergoing large deflection (점탄성 거동을 하는 복합재료 판의 대변위 진동해석)

  • Kim, Tae-Woo;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.546-552
    • /
    • 2000
  • Dynamic behavior of laminated composite plates undergoing moderately large deflection is investigated taking into account the viscoelastic behavior of material properties. Based on von Karman's non-linear deformation theory and Boltzmann's superposition principle, non-linear and hereditary type governing equations are derived. Finite element analysis and the method of multiple scales is applied to examine the effect of large amplitude on the dissipative nature of viscoelastic laminated plates.

  • PDF

Response determination of a viscoelastic Timoshenko beam subjected to moving load using analytical and numerical methods

  • Tehrani, Mohammad;Eipakchi, H.R.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • In this paper the dynamic behavior of a viscoelastic Timoshenko beam subjected to a concentrated moving load are studied analytically and numerically. The viscoelastic properties of the beam obey the linear standard model in shear and incompressible in bulk. The governing equation for Timoshenko beam theory is obtained in viscoelastic form using the correspondence principle. The analytical solution is based on the Fourier series and the numerical solution is performed with finite element method. The effects of the material properties and the load velocity are investigated on the responses by numerical and analytical methods. In addition, the results are compared with the Euler beam results.