Figure 1. Linear viscoelastic solid model.
Figure 2. (a) Element meshes for FEM and (b) material particles for MPM.
Figure 3. (a) Time = 5.0(μs) (b) Time = 10.0(μs) (c) Time = 20.0 (μs) for FEM.
Figure 4. (a) Time = 5.0(μs) (b) Time = 10.0(μs) (c) Time = 20.0 (μs) for MPM.
Figure 5. Decay constant = 6.5
Figure 6. (a) β = 6.5(1/μs) (b) β = 65(1/μs) (c) β = 650(1/μs) at time = 20.0(μs) for MPM at time = 20(μs).
Figure 7. (a) β = 6.5(1/μs) (b) β = 65.0(1/μs) (c) β = 650.0(1/μs) for FEM (left) and MPM (right), respectively.
References
- R. A. Gingold and J. J. Monaghan, "Smoothed particle hydrodynamics: theory and application to non-spherical stars", Mon. Not. R. Astron. Soc., 181, 375 (1977). https://doi.org/10.1093/mnras/181.3.375
- D. T. Gethin, X. S. Yang, and R. W. Lewis, "A two dimensional combined discrete and finite element scheme for simulating the flow and compaction of systems comprising irregular particulates", Computer Methods in Applied Mechanics and Engineering, 195, 5552 (2006). https://doi.org/10.1016/j.cma.2005.10.025
- J. A. Nairn, "Material Point Method Calculations with Explicit Cracks", Computer Modeling in Engineering & Science, 4, 649 (2003).
- K. J. Son and E. P. Fahrenthold, "Hybrid particle-element simulation of composite material impact physics", 18th International Conference on Composite Materials, (2011).
- Z. Chen, S. Jiang, Y. Gan, H. Liu, and T. D. Sewell, "A Particle-Based Multiscale Simulation Procedure within the Material Point Method Framework", Computational Particle Mechanics, 1, 147 (2014). https://doi.org/10.1007/s40571-014-0016-5
- S. E. Jones, A. D., and L. L. Wilson, "An elementary theory for the Taylor impact test", International Journal of Impact Engineering, 21, 1 (1998). https://doi.org/10.1016/S0734-743X(97)00036-5
- H. S. Shin, S. T. Park, S. J. Kim, J. H. Choi, and J. T. Kim, "Deformation behavior of polymeric materials by Taylor impact", International Journal of Modern Physics B, 22, 1235 (2008). https://doi.org/10.1142/S0217979208046591
- S. J. Kim, K. H. Lim, H. S. Shin, J. T. Kim, and J. H. Choi, "Numerical simulation of viscoelastic effects on the rod deformation of Taylor impact test", International Journal of Modern Physics B, 22, 1297 (2008). https://doi.org/10.1142/S0217979208046682
- Zhang, Z. Chen, and Y. Liu, "The Material Point Method : A Continuum-Based Particle Method for Extreme Loading Cases (Tsinghua University Press Computational Mechanics Series)", Elsevier Science. Kindle Edition, (2016).
- 류민영, 조광수, 주상우, 권영돈, 정인재, "이론유변학", 한국유변학회, (2009).
- J. I. Lin, "Dyna3D: A explicit three-dimensional finite element code for solid structural mechanics, User manual", UCRL-MA-107254, (2005).
- J. O. Hallquist, LS-DYNA Theory manual, (2006).