DOI QR코드

DOI QR Code

Rheological Behavior of Viscoelastic Semi-Solid Ointment Base (Vaseline) in Oscillatory Shear Flow Fields

진동전단유동장에서 점탄성 반고형 연고기제(바셀린)의 레올로지 거동

  • Song, Ki-Won (School of Chemical Engineering, Pusan National University) ;
  • Chang, Gap-Shik (School of Chemical Engineering, Pusan National University)
  • 송기원 (부산대학교 공과대학 응용화학공학부) ;
  • 장갑식 (부산대학교 공과대학 응용화학공학부)
  • Published : 2006.02.20

Abstract

Using a Rheometries Dynamic Analyzer (RDA II), the dynamic viscoelastic properties of a semi-solid ointment base (vaseline) in large amplitude oscillatory shear flow fields were measured over a temperature range of $25{\sim}45^{\circ}C$ and the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a wide range of angular frequencies. In this article, the nonlinear viscoelastic behavior was reported from the experimentally obtained data and the effect of temperature on this behavior was discussed in detail. In addition, the angular frequency and temperature dependencies of a linear viscoelastic behavior were explained. Finally, the applicability of a time-temperature superposition principle originally developed for polymeric materials was examined using a shift factor. Main results obtained from this study can be summarized as follows : (1) At very small strain amplitude region, vaseline shows a linear viscoelastic behavior independent of the imposed deformation magnitudes. Above a critical strain amplitude $({\gamma}_{0}=0.1{\sim}0.2%)$, however, vaseline exhibits a nonlinear viscoelastic behavior ; indicating that both the storage modulus and dynamic viscosity are sharply decreased with increasing deformation magnitude. (2) In large amplitude oscillatory shear flow fields, an elastic behavior (storage modulus) has a stronger strain amplitude dependence and begins to show a nonlinear behavior at a smaller strain amplitude region than does a viscous behavior (dynamic viscosity). (3) In small amplitude oscillatory shear flow fields, the storage modulus as well as the loss modulus are continuously increased as an increase in angular frequency and an elastic nature is always superior to a viscous behavior over a wide range of angular frequencies. (4) A time-temperature superposition principle can successfully be applicable to vaseline. This finding allows us to estimate the dynamic viscoelastic behavior of vaseline over an extraordinarily extended range (11 decades) of angular frequencies inaccessible from the experimentally measured range (4 decades).

Keywords

References

  1. J.H. Kim, K.W. Song, J.O. Lee and C.H. Lee, Studies on the flow properties of semi-solid dosage forms (I) : Steady shear flow behavior of toothpastes, J. Korean Pharm. Sci., 25, 213-221 (1995)
  2. J.H. Kim, K.W. Song, GS. Chang, J.O. Lee and C.H. Lee, Studies on the flow properties of semi-solid dosage forms (II) : Temperature-dependent flow behavior of vaseline, J. Pharm. Soc. Korea, 41, 38-47 (1997)
  3. GM. Eccleston, Structure and rheology of cetomacrogol cream: The influence of alcohol chain length and homologue composition, J. Pharm. Pharmacol., 29, 157-162 (1977) https://doi.org/10.1111/j.2042-7158.1977.tb11274.x
  4. GM. Eccleston, B.W. Barry and S.S. Davis, Correlation of viscoelastic functions for pharmaceutical semisolids : Comparison of creep and oscillatory tests for oil-in-water creams stabilized by mixed emulsifiers, J. Pharm. Sci., 62, 1954-1961 (1973) https://doi.org/10.1002/jps.2600621210
  5. B.W. Barry and M.C. Meyer, Sensory assessment of spreadability of hydrophilic topical preparations, J. Pharm. Sci., 62, 1349-1354 (1973) https://doi.org/10.1002/jps.2600620828
  6. B.W. Barry, Continuous shear viscoelastic and spreading properties of a new topical vehicle, FAPG base, J. Pharm. Pharmacol., 25, 131-137 (1973) https://doi.org/10.1111/j.2042-7158.1973.tb10606.x
  7. B.W. Barry and A.J. Grace, Sensory testing of spreadability : Investigation of rheological conditions operative during application of topical preparations, J. Pharm. Sci., 61, 335-341 (1972) https://doi.org/10.1002/jps.2600610303
  8. M.L. De Martine and E.L. Cussler, Predicting subjective spreadability, viscosity and stickiness, J. Pharm. Sci., 64, 976-982 (1975) https://doi.org/10.1002/jps.2600640618
  9. B. Idson, Percutaneous absorption, J. Pharm. Sci., 64, 901-924 (1975) https://doi.org/10.1002/jps.2600640604
  10. B.W. Barry, Advances in Pharmaceutical Sciences, Vol. 4, H.S. Bean, A.H. Beckett and J.E. Carless Eds, Academic Press, New York, pp. 1-72 (1974)
  11. J.C. BoyIan, Rheological study of selected pharmaceutical semisolids, J. Pharm. Sci., 55, 710-715 (1966) https://doi.org/10.1002/jps.2600550708
  12. R.C.C. Fu and D.M. Lidgate, Characterization of the shear sensitivity property of petrolatum, J. Pharm. Sci., 74, 290-294 (1985) https://doi.org/10.1002/jps.2600740313
  13. M.D. Planas, EG Rodriguez, R.B. Maximinno and J.V.H. Dominguez, Thixotropic behavior of a microcrystalline cellulose-sodium carboxymethyl cellulose gel, J. Pharm. Sci., 77, 799-801 (1988) https://doi.org/10.1002/jps.2600770917
  14. G.B. Thurston and A. Martin, Rheology of pharmaceutical system : Oscillatory and steady shear of non-Newtonian viscoelastic liqiuds, J. Pharm. Sci., 67, 1499-1506 (1978) https://doi.org/10.1002/jps.2600671103
  15. J. Ceulemans, L.V. Santvliet and A. Ludwig, Evaluation of continuous shear and creep rheometry in the physical characterisation of ointmets, Int. J. Pharm., 176, 187-202 (1999) https://doi.org/10.1016/S0378-5173(98)00319-6
  16. C. Viseras, G.H. Meeten and A. Lopez-Galindo, Pharmaceutical grade phyllosilicate dispersions : The influence of shear history on floc structure, Int. J. Pharm., 182, 7-20 (1999) https://doi.org/10.1016/S0378-5173(99)00075-7
  17. D.Q.M. Craig and F.A. Johnson, Pharmaceutical applications of dynamic mechanical thermal analysis, Thermochim. Acta, 248, 97-115 (1995) https://doi.org/10.1016/0040-6031(94)01888-N
  18. H.A. Barnes, J.F. Hutton and K. Walters, An Introduction to Rheology, Elsevier, Amsterdam, Netherlands, pp. 12-15 (1989)
  19. K.S. Anseth, C.N. Bowman and L. Brannon-Peppas, Mechanical properties of hydrogels and their experimetal determination, Biomaterials, 17, 1647-1657 (1996) https://doi.org/10.1016/0142-9612(96)87644-7
  20. D.S. Jones, Dynamic mechanical analysis of polymeric systems of pharmaceutical and biomedical significance, Int. J. Pharm., 179, 167-178 (1999) https://doi.org/10.1016/S0378-5173(98)00337-8
  21. B.W. Barry and M.C. Meyer, The Theological properties of carbopol gels (I) : Continuous shear and creep properties of carbopol gels, Int. J. Pharm., 2, 1-25 (1979) https://doi.org/10.1016/0378-5173(79)90025-5
  22. B.W. Barry and M.C. Meyer, The rheological properties of carbopol gels (II) : Oscillatory properties of carbopol gels, Int. J. Pharm., 2, 27-40 (1979) https://doi.org/10.1016/0378-5173(79)90026-7
  23. S.S. Davis, Viscoelastic properties of pharmaceutical semisolids I : Ointment bases, J. Pharm. Sci., 58, 412-418 (1969) https://doi.org/10.1002/jps.2600580404
  24. S.S. Davis, Viscoelastic properties of pharmaceutical semisolids II : Creams, J. Pharm. Sci., 58, 418-421 (1969) https://doi.org/10.1002/jps.2600580405
  25. S.S. Davis, Viscoelastic properties of pharmaceutical semisolids III : Nondestructive oscillatory testing, J. Pharm. Sci., 60, 1351-1355 (1971) https://doi.org/10.1002/jps.2600600913
  26. S.S. Davis, Viscoelastic properties of pharmaceutical semisolids IV : Destructive oscillatory testing, J. Pharm. Sci., 60, 1356-1360 (1971) https://doi.org/10.1002/jps.2600600914
  27. N.W. Tschogel, The Phenomenological Theory of Linear Viscoelastic Behavior, Springer-Verlag, Berlin, Germany, pp. 69-156 (1989)
  28. C.W. Macosko, Rheology : Principles, Measurements, and Applications, VCH Publishers, New York, U.S.A., pp. 109-133 (1994)
  29. G.W. Radebaugh and A.P. Simonelli, Phenomenological viscoelasticity of a heterogeneous pharmaceutical semisolid, J. Pharm. Sci., 72, 415-422 (1983) https://doi.org/10.1002/jps.2600720423
  30. G.W. Radebaugh and A.P. Simonelli, Temperature-frequency equivalence of the viscoelastic properties of anhydrous lanolin USP, J. Pharm. Sci., 72, 422-425 (1983) https://doi.org/10.1002/jps.2600720424
  31. G.W. Radebaugh and A.P. Simonelli, Application of dynamic mechanical testing to characterize the viscoelastic properties of powder-filled semisolids, J. Pharm. Sci., 73, 590-594 (1984) https://doi.org/10.1002/jps.2600730504
  32. G.W. Radebaugh and A.P. Simonelli, Relationship between powder surface characteristics and viscoelastic properties of powder-filled semisolids, J. Pharm. Sci., 74, 3-10 (1985) https://doi.org/10.1002/jps.2600740103
  33. S. Ishikawa, M. Kobayashi and M. Samejima, Powder-filled semisolids : Influence of powder addition to vaseline on the rheological properties, Chem. Pharm. Bull., 37, 1355-1361 (1989) https://doi.org/10.1248/cpb.37.1355
  34. S. Ishikawa and M. Kobayashi, Influence of powder addition to macrogol ointment Japanese pharmacopeia on the rheological properties, Chem. Pharm. Bull., 38, 2814-2820 (1990) https://doi.org/10.1248/cpb.38.2814
  35. S. Ishikawa, M. Kobayashi and M. Samejima, Evaluation of the rheological properties of various kinds of carboxyvinyl polymer gels, Chem. Pharm. Bull., 36, 2118-2127 (1988) https://doi.org/10.1248/cpb.36.2118
  36. S. Ishikawa and M. Kobayashi, Effect of the powder addition to carboxyvinyl polymer hydrogel on viscoelasticity, Chem. Pharm. Bull., 40, 1897-1901 (1992) https://doi.org/10.1248/cpb.40.1897
  37. L. Bromberg, M. Temchenko, V. Alakhov and T.A. Hatton, Bioadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogels, Int. J. Pharm., 282, 45-60 (2004) https://doi.org/10.1016/j.ijpharm.2004.05.030
  38. G Bonacucina, S. Martelli and GF. Palmieri, Rheological, mucoadhesive and release properties of carbopol gels in hydrophilic cosolvents, Int. J. Pharm., 282, 115-130 (2004) https://doi.org/10.1016/j.ijpharm.2004.06.012
  39. VS. Rudraraju and CM. Wyandt, Rheological characterization of microcrystalline cellulose/sodium-carboxymethyl cellulose hydrogels using a controlled stress rheometer (part I), Int. J. Pharm., 292, 53-61 (2005) https://doi.org/10.1016/j.ijpharm.2004.10.011
  40. VS. Rudraraju and CM. Wyandt, Rheology of microcrystalline cellulose and sodium carboxymethyl cellulose hydrogels using a controlled stress rheometer (part II), Int. J. Pharm., 191, 63-73 (2005)
  41. B.F. Birdwell and F.W Jessen, Crystallization of petroleum waxes, Nature, 209, 366-368 (1966) https://doi.org/10.1038/209366a0
  42. B.W Barry and A.J. Grace, Structural, rheological and textural properties of soft paraffins, J. Texture Studies, 2, 259-279 (1971) https://doi.org/10.1111/j.1745-4603.1971.tb01004.x
  43. L.E. Pena, B.L. Lee and J.F. Stearns, Structural rheology of a model ointment, Pharm. Res., 11, 875-881 (1994) https://doi.org/10.1023/A:1018990010686
  44. K.W. Song and GS. Chang, Steady shear flow and dynamic viscoelastic properties of semi-solid food materials, Korean J. Rheol., 11, 143-152 (1999)
  45. F. Tanaka arid S.F. Edwards, Viscoelastic properties of physically crosslinked networks (part II) : Dynamic mechanical moduli, J. Non-Newt. Fluid Mech., 43, 273-288 (1992) https://doi.org/10.1016/0377-0257(92)80028-V
  46. J.D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., John Wiley & Sons, New York, U.S.A., pp. 264-320 (1980)
  47. E.M. Woo, Time-temperature viscoelastic behavior of an interlaminar-toughened epoxy composite, J. Appl. Polym. Sci., 50, 1683-1692 (1993) https://doi.org/10.1002/app.1993.070501002
  48. N. Kao, S.N. Bhattacharya, R. Shanks and I.H. Coopes, The effect of temperature on the viscoelastic properties of model and industrial dispersions, J. Rheol., 42, 493-506 (1998) https://doi.org/10.1122/1.550962

Cited by

  1. Combining stress relaxation and rheometer test results in modeling a polyurethane stopper vol.26, pp.6, 2012, https://doi.org/10.1007/s12206-012-0432-5