• Title/Summary/Keyword: linear predictor coefficients

Search Result 39, Processing Time 0.022 seconds

A Study on Comfortableness Evaluation Technique of Chairs using Electroencephalogram (뇌파를 이용한 의자의 쾌적성 평가 기술에 관한 연구)

  • 김동준
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.702-707
    • /
    • 2003
  • This study describes a new technique for human sensibility evaluation using electroencephalogram(EEG). Production of EEG is assumed to be linear. The linear predictor coefficients and the linear cepstral coefficients of EEG are used as the feature parameters of sensibility and pattern classification performances of them are compared. Using the better parameter, a human sensibility evaluation algorithm is designed. The obtained results are as follows. The linear predictor coefficients showed the better performance in pattern classification than the linear cepstral coefficients. Then, using the linear predictor coefficients as the feature parameter, a human sensibility evaluation algorithm is developed at the base of a multi-layer neural network. This algorithm showed 90% of accuracy in comfortableness evaluation in spite of fluctuations in statistics of EEG signal.

Pattern Classification of Four Emotions using EEG (뇌파를 이용한 감정의 패턴 분류 기술)

  • Kim, Dong-Jun;Kim, Young-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.4
    • /
    • pp.23-27
    • /
    • 2010
  • This paper performs emotion classification test to find out the best parameter of electroencyphalogram(EEG) signal. Linear predictor coefficients, band cross-correlation coefficients of fast Fourier transform(FFT) and autoregressive model spectra are used as the parameters of 10-channel EEG signal. A multi-layer neural network is used as the pattern classifier. Four emotions for relaxation, joy, sadness, irritation are induced by four university students of an acting circle. Electrode positions are Fp1, Fp2, F3, F4, T3, T4, P3, P4, O1, O2. As a result, the Linear predictor coefficients showed the best performance.

  • PDF

A Study on the Emotion State Classification using Multi-channel EEG (다중채널 뇌파를 이용한 감정상태 분류에 관한 연구)

  • Kang, Dong-Kee;Kim, Heung-Hwan;Kim, Dong-Jun;Lee, Byung-Chae;Ko, Han-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2815-2817
    • /
    • 2001
  • This study describes the emotion classification using two different feature extraction methods for four-channel EEG signals. One of the methods is linear prediction analysis based on AR model. Another method is cross-correlation coefficients on frequencies of ${\theta}$, ${\alpha}$, ${\beta}$ bands. Using the linear predictor coefficients and the cross-correlation coefficients of frequencies, the emotion classification test for four emotions, such as anger, sad, joy, and relaxation is performed with a neural network. Comparing the results of two methods, it seems that the linear predictor coefficients produce the better results than the cross-correlation coefficients of frequencies for-emotion classification.

  • PDF

An Estimation of The Unknown Theory Constants Using A Simulation Predictor

  • 박정수
    • Journal of the Korea Society for Simulation
    • /
    • v.2 no.1
    • /
    • pp.125-133
    • /
    • 1993
  • A statistical method is described for estimation of the unknown constants in a theory using both of the computer simulation data and the real experimental data, The best linear unbiased predictor based on a spatial linear model is fitted from the computer simulation data alone. Then nonlinear least squares estimation method is applied to the real experimental data using the fitted prediction model as if it were the true simulation model. An application to the computational nuclear fusion devices is presented, where the nonlinear least squares estimates of four transport coefficients of the theoretical nuclear fusion model are obtained.

  • PDF

Robust design of SISO digital PI and PID predictor controllers (Robust한 단 입출력 PI 및 PID 예측 제어기 설계)

  • 전병균;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.362-366
    • /
    • 1986
  • Using simple linear prediction algorithm a design procedure of robust PI and PID controllers for SISO system, usually called 'PID predictor controllers, is developed. The design procedure is able to properly adjust gain margin and phase margin and control coefficients are selected in frequency domain. The performance of the PID predictor controller is superior to that of the normal PID controller in terms of robustness in design and disturbance rejection.

  • PDF

A Study on the Human Sensibility Evaluation Technique Using EEGs of 4 Emotions (4가지 감정의 뇌파를 이용한 감성평가 기술에 관한 연구)

  • Kim, Dong-Jun;Kang, Dong-Kee;Kim, Heung-Hwan;Yi, Sang-Han;Go, Han-Woo;Park, Se-Jin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.11
    • /
    • pp.528-534
    • /
    • 2002
  • This paper describes a technique for human sensibility evaluation using EEGs of 4 emotions. The proposed method uses the linear predictor coefficients as EEG feature parameters and a neural network as sensibility pattern classifier. For subject independent system, multiple templates are stored and the most similar template can be selected. EEG signals corresponding to 4 emotions such as relaxation, joy, sadness and anger are collected from 5 armature performers. The states of relaxation and joy are considered as positive sensibility and those of sadness and anger as negative. The classification performance suing the proposed method is about 72.6%. This may be promising performance in the human sensibility evaluation.

A Study on Emotion Classification using 4-Channel EEG Signals (4채널 뇌파 신호를 이용한 감정 분류에 관한 연구)

  • Kim, Dong-Jun;Lee, Hyun-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.23-28
    • /
    • 2009
  • This study describes an emotion classification method using two different feature parameters of four-channel EEG signals. One of the parameters is linear prediction coefficients based on AR modelling. Another one is cross-correlation coefficients on frequencies of ${\theta}$, ${\alpha}$, ${\beta}$ bands of FFT spectra. Using the linear predictor coefficients and the cross-correlation coefficients of frequencies, the emotion classification test for four emotions, such as anger, sad, joy, and relaxation is performed with an artificial neural network. The results of the two parameters showed that the linear prediction coefficients have produced the better results for emotion classification than the cross-correlation coefficients of FFT spectra.

  • PDF

Pre-processing and Bias Correction for AMSU-A Radiance Data Based on Statistical Methods (통계적 방법에 근거한 AMSU-A 복사자료의 전처리 및 편향보정)

  • Lee, Sihye;Kim, Sangil;Chun, Hyoung-Wook;Kim, Ju-Hye;Kang, Jeon-Ho
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.491-502
    • /
    • 2014
  • As a part of the KIAPS (Korea Institute of Atmospheric Prediction Systems) Package for Observation Processing (KPOP), we have developed the modules for Advanced Microwave Sounding Unit-A (AMSU-A) pre-processing and its bias correction. The KPOP system calculates the airmass bias correction coefficients via the method of multiple linear regression in which the scan-corrected innovation and the thicknesses of 850~300, 200~50, 50~5, and 10~1 hPa are respectively used for dependent and independent variables. Among the four airmass predictors, the multicollinearity has been shown by the Variance Inflation Factor (VIF) that quantifies the severity of multicollinearity in a least square regression. To resolve the multicollinearity, we adopted simple linear regression and Principal Component Regression (PCR) to calculate the airmass bias correction coefficients and compared the results with those from the multiple linear regression. The analysis shows that the order of performances is multiple linear, principal component, and simple linear regressions. For bias correction for the AMSU-A channel 4 which is the most sensitive to the lower troposphere, the multiple linear regression with all four airmass predictors is superior to the simple linear regression with one airmass predictor of 850~300 hPa. The results of PCR with 95% accumulated variances accounted for eigenvalues showed the similar results of the multiple linear regression.

A New Reflection coefficient-Estimation Algorithm for Linear Prediction (선형 예측을 위한 새로운 반사계열 추정 알고리즘)

  • 조기원;김수중
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.4
    • /
    • pp.1-5
    • /
    • 1982
  • A new algorithm, based upon a lattice formulation, is presented for linear prediction. The output of the algorithm is the reflection coefficients that guarantee the stability of the all-pole model. The equations are derived that compute the covariance of the residuals recursively at each prediction stage, and in processing of computing that eqations, the reflection coefficients are estimated without computing the predictor coefficients. Comparing with covariance-lattice method, it can be said that the new algorithm reduce the number of computations to about half and is more efficient for fitting of the high-order model.

  • PDF

Design of a Lossless Audio Coding Using Cholesky Decomposition and Golomb-Rice Coding (콜레스키 분해와 골롬-라이스 부호화를 이용한 무손실 오디오 부호화기 설계)

  • Cheong, Cheon-Dae;Shin, Jae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1480-1490
    • /
    • 2008
  • Design of a linear predictor and matching of an entropy coder is the art of lossless audio coding. In this paper, we use the covariance method and the Choleskey decomposition for calculating linear prediction coefficients instead of the autocorreation method and the Levinson-Durbin recursion. These results are compared to the polynomial predictor. Both of them, the predictor which has small prediction error is selected. For the entropy coding, we use the Golomb-Rice coder using the block-based parameter estimation method and the sequential adaptation method with LOCO-land RLGR. The proposed predictor and the block-based parameter estimation have $2.2879%{\sim}0.3413%$ improved compression ratios compared to FLAC lossless audio coder which use the autocorrelation method and the Levinson-Durbin recursion. The proposed predictor and the LOCO-I adaptation method could improved by $2.2879%{\sim}0.3413%$. But the proposed predictor and the RLGR adaptation method got better results with specific signals.

  • PDF