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An Estimation of The Unknown Theory Constants
Using A Simulation Predictor

Jeong-Soo Park* and Keon-Woo Lim**

the theoretical nuclear fusion model are obtained.

| Abstract |

A statistical method is described for estimation of the unknown constants in a theory using both
of the computer simulation data and the real experimental data. The best linear unbiased predictor
based on a spatial linear model is fitted from the computer simulation data alone. Then nonlinear
least squares estimation method is applied to the real experimental data using the fitted prediction
model as if it were the true simulation model. An application to the computational nuclear fusion
devices is presented, where the nonlinear least squares estimates of four transport coefficients of

1. Introduction

Scientific researchers often use complex computer simulation
programs for theoretical investigations because some physical
experiments are too cxpensive or simply impossible, One
feature of a computer simulation experiment, different from
a physical experiment, is that the output is often deterministic
- the response is observed without measurement error. This
calls for distinct techniques useful in modeling deterministic
systems,

Since simulation codes are often computationally very
expensive to run, a careful selection of inputs and an efficient

analysis of its outputs are necessary. In our application to
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nuclear fusion devices (called tokamaks), a single run of the
computer simulation code (called BALDUR) requites about
three w0 five minutes of CPU time on a supercomputer
(CRAY-2). For many purposes, however, an emulator of the
code based on a statistical prediction model 15 sufficient and
can be run more cheaply than the original code. Thus, we
model the response of computer simulation code as the
realization of a stochastic process which has been succesively
used in design and analysis of computer experiments[9]. This
model is adapted from the “universal kriging” in the spatial
statistics literature[ 7], This approach provides a statistical
basis for analysing detcrministic data, for designing experi-

ments for efficient prediction and for comparison  of
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computer-encoded theory and experimental data in analysis
of complex systems,

An objective of research in a latge class of dynamic systems
is to determine any unknown universal constants or
coefficients (denoted by ¢*) in a theory. The coefficients can
be determined by “tuning” the computer model to the real
data so that the tuned code gives a good match to data, In
other words, this method involves simulating a theory model
with ranges of coefficients and selecting elements from these
ranges which best match the simulated data with the real
data. The accurate estimation of such constants is very
important, in our application, for designing the next
generation of thermo-nuclear reactors. This connection of a
computational and physical experiment requires the application
of new statistical methods.

One similar problem is found in chemical kinetics where
Miller and Frenklach (1983) used the response surface
methodology. However, Sack, Schiller and Welch (1987)
illustrated that their approach based on spatial prediction
model is more flexible and efficient than the response sutface
methodology in handling computer simulation obsevations.
Another interesting problem related to our method is found
in the econometrics literature what is known as “calibration”
[3], although only the economic time series models are
considered, The unknown theory coefficients are estimated
basically by the method of moments in which population
moments are computed by the simulations of a model in
economics theory,

This article deals with a nonlinear least squares estimation
method (NLSE), where the spatial model is fitted to the
computer simulation data alone, and then from the real data
found nonlinear least squares estimates of ¢* using the fitred
spatial model as if it were the true simulation model. In
section 2, we outline a model for computer simulation
experiments. The NLSE formulation is given in section 3.
In the application to nuclear fusion devices given in section
4, a cheaper emulator of BALDUR code has been constructed,
and the universal constants were estimated from data of two
tokamaks (named ASDEX and PDX). Finally, in section 5,

we provide some concluding remarks.

2. A Statistical Model Approximating
Computer Simulations

Following Sacks, Welch, Mitchell and Wyan (1989,
abbreviatedly SWMW ), we adopt a spatial regression model
which treats the computer simulation response Y{x) as a

realization of a random function superimposed on a regression

model[ 9],

.

V() = A0 +2(1), (2.1)

=

where f ’s are known functions and /s are unknown
regression coefficients. Here the random process Z(.)
reptesenting the systematic departure from the assumed linear
model is assumed to be a Gaussian process with mean zero
and covariance COV{i,u) = o;R(tu) between Z(t) and Z(u),
for t=(h, .., 4;)u=(u, ., u;), where o is the process
variance (a scale factor) and R{r, u) is the correlation
function, The rationale is that departures of the complex
response from the simple regtession model, though determinis-
tic, may resemble a sample path of a (suitably chosen)
stochastic process Z.

Computer observations are sometimes on the subject on
measurement errors which may be due to approximation,
round-off error, or Monte-Carlo routines in the simulation
code. For a given set of design sites {S},..., Sn} , let y be
an #X1 vector of observations from a computer experiment

given by
y(s,) =Y(s;)+&,15i<n, (2.2)

where measurement crrors € ate assumed to be uncorrelated,
mean zero Normal random variables with constant variance
Var(&;) = 6,, and assumed to be independent of Z(x). In
our application, the ¢€; enters because there are Monte-Carlo
integrations performed in BALDUR,

Some possible choices of covariance function are from the

power exponential family which is given by

d
R(t,u) = exp|-02 [t-u; |, (23)



AlZZ0IM O &7IE 0|88 0|X| Ol Mol £ 127
Lo ]

where the ¢=20. The non-negative parameter § determines
the covariance structure of Z: small g reflects large
correlations between nearby observations while large @ reflects
small nearby correlations. It is thus related to the smoothness
of the response. Of course, many other covariance functions
are possible[7].

Once a covariance function and its parameters are specified,
one can predict Y(x) based on the model (2.1) using the
observations v(s) For the prediction formula, define the n

Xn matrix ¥ and nXk matrix F by

V:[R(snsj)]l§is,5j$n+yrzlv (24)

where ¥, =0'/0, which is the ratio of noise versus signal

variance, and

where (s, ..., $,) are the design sites, Here 2} is a covariance
matrix berween observations {or design sites), and F is so-
called a design matrix. For any prediction site %, the n X 1
vector v, and k X | vector f, are defined by

v = [R(s, 1), ... R(s,, )],

ns

Fo=lhx), o ful0)],

respectively, Here v, is a cotrelation vector between design
sites and a prediction site ¥, Then the best linear unbiased
predictor (BLUP) of Y{x) given the observation vector ¥
is (see SWMW or [7], pp. 44-58)

F ] [‘8}= fxBtv V' (v-FB)  (25)

. A
) =y ’ |
‘ <X) [_1 ry_/;\'J \\ FfO ]

where B=(FV'F)'FI"'v is the generalized least squares

estimator of . The mean squared error of prediction is

MSE(x) = MSE(Y(x)) =E,| Y(2)-Y(x) F, (26)

and the normalized mean squared error, mse(x) = MSE(x)/o?

is
mse(x) =R(x0)-[v /] {}g] { } } (27)

In the absence of measurement error (@8 =0 in (2.2)),
the prediction surface interpolates the observations because
the predictor Y(s,) at a design point s; has mse(s,) =0, i.
e, i’(sl) =Y{s;) (see [7], pp. 44-58). This is one of the
reasons why the model is used for deterministic data analysis
of computer experiments. If 07)0, then }-'(.k') smoothes the

observed data: smaller @ and larger %’

(s

give smoother
predictions. For a given “weight measure” # on a support
set X, the {(normalized) integrated mean  squared error
(IMSE) is

IMSE = s mse(x)d ). (28)

Note that neither mse nor IMSE depend on the data v nor
on the unknown parameters 3 and ¢%, This makes it possible
to design an experiment before taking the data, 1e., to sclect
the observation sites which optimize some criteria such as
IMSE and maximum mse (see SWMW or Sacks, Schiller &
Welch, 1987, on this direction)[8], [9].

After computer simulation data have been collected at the
design sites, maximum likelihood estimators {MLE) of the
model parameters are computed to build a prediction model,
Since we assume y(x) has a multivariate Normal distribution
with mean FA and covariance matrix @;V, the likelihood

function of v is

i 2mat) "
Livg B, 0, v, %)= (”":_)'
IV
(v-FBYV (y-FB) (2.9)

xp 20" :
When ¢ and 9% are specified, the MLE of &% is given by
&L Emyri ), (2105

where B is the generalized least squares estimator of A as in
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(25). Then -2 times the log likelihood function (except for
constants) with B and 3§ plugged in is

A =nloga’+log | V. (2.11)
Since the likelihood equations do not lead to a closed form
solution, a numerical optimization procedure is used. We used
a quasi-Newton optimizer with multiple initial values because
of multi-modality of the likelihood surface,

Some combinations of A’s will determine the prediction
modcl, but the following simple model is used in our
application:

V() = Bot By + -+ By + Z(x). (2.12)
Of course, many other models are possible, To sclect the best
prediction model, the “forward” or “backward” stepwise
selection procedures may be possible (see Welch et. al. (1992)
on this ditection)[12].

After fitting a2 prediction model, the best additive
approximation technique can be used to estimate the main
effects of input variables which were defined in SWMW
(1989). We applied the ACE[1] on iy(t,ﬂ) and ¢,
i=12,+-- I, where #;s are random vectors having uniform
distribution over the prediction region. ACE is a useful
expioratory modeling tool to help determine which of the
response i/(t,) and independent variables x;, +++, x, are in need
ot nonlinear transformation, and what type of transformation
is needed. Such plots with variations, resulted from the ACE,
can be used as a guide for summarizing and guessing the
fitted model (see Figure 1 in section 4). The variations with
respect to a variable X are obtained by i'(ti) minus the
sum of the transformations cortesponding to the independent

vatiables except the variable X},

3. Nonlinear Least Squares Estimation
Using A Simulation Predictor

[n this section, we describe nonlinear least squares method

.
for estimating unknown universal constants ¢ in a computer

code using real experimental data {or database) and computer
data, In collecting computer data, some candidates of ¢ are
used as inputs of computer simulation code with other
variables, We introduce the following notations for ¢ universal

constants .

d © dimension of input variables of computer code

¢*  the true (unknown) universal constants (g dimensional ),

€ : the independent variables in experimental database(d-¢
dimensional ),

z @ the experimental observations in database; z=z(c¥ §),

¢ @ the input variables of computer code corresponding to

¢* (g dimensional),

w © the input variables of computer code corresponding to
& (d-g dimensional),
n @ number of observations for computer code,
m © number of observations in experimental database,
Y o the true computer code as a function of ¢ and w.
Here s =(c,w) represents a design site selected for a
computer experiment. Thus the computer response v is a
function of s, ie.,
y=Y{c,w)+ € as in (2.2).
Since we assume the true simulation code is close to the
real experimental data with some vatiation, the following

model 1s used:

. (31)

where ¢ is assumed to be independent and identically
distributed with mean 0 and variance o°, and it is also
assumed to be independent of Y and € in (2.2).

A major difficulty of the computer experiment in our
application 1s that one run of BALDUR takes approximately
3 to 5 CPU minutes on a CRAY-2 supercomputer, If we
use a nonlinear regression technique, then ¢* may be estimated

by minimizing the residual sum of squares

m

RSS(c*) = Z[z-Y(c* 67T, (3.2)

1=1
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where z; is an observed response from real experiments and

1

Y(c* /€

;) is the corresponding theoretical value (an output

of BALDUR) at the experimental point &, Since there are
74 observations in the experimental data set, one evaluation
of RSS(c) takes about 74 X 4 minutes (5 hours) on a
CRAY-2. It is too time-consuming to run the code as many
times as needed for an iterative nonlincar optimizer to find
&,

Nonlinear least squares method first fits the model (2.1)
by MLE using computer data alone, then by treating the
fitted prediction model as if it were the true model, find the
nonlinear least squares estimators {£*) so that the simulation
predictor gives the best match to the experimental data,

That is, find ¢* such that minimizes

n ~
RSS(e*) = 2[z(c* &)-Y(c*, §) 1, (3.3)
i1
where Y(c* ) is the best linear unbiased prediction of the
ttue computer response Y at (c* ). Since it is difficult to
have a closed form of the first derivative of (3.3) with respect

* . L . .
to ¢, a nurmerical optimization routine 1s necessary to find

¢* Note that Y is a (computationally) cheaper emulator of

the expensive computor simulation code. This makes the
problem computationally feasible,

The advantages of this method are that it is reasonably
easy and cheap to implement, and that the computer and
experimental data are uncoupled, The prediction residuals
z(c*, E,)-i"\' ¢*, Elv) can be used to check the validities of the
prediction model, ¢ and the least squares estimation method.
Note that the selection of a prediction model for i’(c", §) is
important because the values of ¢* may vary according to
the selected prediction model. In our application the model
(2.12) is used.

4. An Application to Nuclear Fusion
Model

In this section we describe how the NL§ method of the
previous section is applied to nuclear fusion model. More

derails including the data sets can be found in Park {1991).

4.1 Problem Formulation.

An  objective of research in nuclear fusion reactors

(tokamaks) is to understand the transport mechanism
governing the process, and in particular, to obtain an
appropriate model for the global energy confinement time
and to determine the parameters (transport coefficients or
rate constants) in a transport model.
Since some of the constants can not be mathematically
determined[10], a systematic statistical method is required.
This method may need to use both experimental data and
computer data obtained by running a tokamak simulation code
(Called BALDUR, [11])based on a theoretical model, because
it is difficult to extract information on the constants from
experimental data alone,

One of the simple measures of energy efficiency in tokamak
is the global energy confinement time Tg. The theoretically-

based confinement model may be written as[4]
7E = f{¢*, a,R, P, I,N,B), (4.1)

where f is a known function (calculated by a complex code),
a and R are the minor and major radit of the tokamak,
respectively, P is the input towl power, [ is the plasma
current, N is the electron density, B is the toroidal magnetic
field and ¢*= (CI, ‘-",c: ) are the adjustable constants
determining energy transfer by turbulent modes known as
drift waves, rippling, resistive ballooning and critical value of
7,, respectively, Of course, there are several other vatiables
which are not the major ones,

The experimental data were taken from the database
collected by S. Kaye for two tokamaks: ASDEX (32) in
Germany, PDX (42) in Princeron, which have fixed values
of R and a, with number of observations in parentheses,

Following the previous statistical analysis[4] on the
experimental datd, we wke logy transformations to P, I, N, B
and T,. Therefore the variables considered in this study are
€1, €2 Oy €y logP, logl, logN logB and logTg. The first four
¢’s are input variables of the BALDUR code corresponding
e.* cfand ¢*. Note that the

to the true coefficients ¢*
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experimental data consists of only the second four variables
and log, whereas the computer data consists of eight

independent variables and log, obtained from BALDUR.

4.2 Design and Analysis of Tokamak Simulation
Experiments.

In selecting input sites of the simulation code, we used
data-adaptive sequential optimal designs as the following
manner: for initially chosen parameters (such as g and ¥?)
of the model (2.1), we first find the optimal design which
minimizes the IMSE given in (2.8), and use this design to
obatain computer observations, then find MLE’s of the model
parameters, and use them to choose the next stage optimal
design under the condition that the previous design is given
(see[6] for details of the designs ). Following this procedure
we obtained 66 and 64 observations from ASDEX and PDX
tokamak simulators, respectively,

Table 1 shows the parameter estimates obtained from the
computer data, where S, and A, is small for both tokamaks,
This indicates that the effects of ¢, and ¢y are small, Note
that the intercept value (/) for log,, of PDX is less than
that of ASDEX. This indicates that PDX is cooler than
ASDEX for similar input parameters. Also note that o, (=
02X y?) for ASDEX is bigger than that of PDX, which
means that computer observations of ASDEX have larger
“measurement” errors than those of PDX,

The main effects plot with variations (drawn based on
ACE) for ASDEX in Figute 1 also illustrate that variable
¢z, ¢4 and logB have a little effect on log, . The variable
logP tutns out the most strong factor effecting negatively on
log, . The variables log/ and logN make positive effects
whereas ¢, and ¢; make negative effects, The plot for PDX
is very similar to Figure | except that variable logB makes
positive effect, This conclusion is consistent to the expectation
from a theory and to the finding of Kaye and Goldston[4]

who fitted the experimental data.

. ASDEX PDX
Symbol Descriptions

value | value
n computer data sample size 66 64
80 Intercept for Y -141 -1.81
Al Intercept for C; -0.28 0.30
B2 Intercept for G, 0.07 -0.07
B3 Intercept for C; -017 -0.11
B4 Intercept for C, 0.08 0.00
A5 Intercept for log P -0.71 -0.33
86 Intercept for log 1 0.25 0.17
87 Intercept for log N 0.15 -0.03
A8 Intercept for log B 0.09 0.28
8 Cotrelation parameter 224 1 1009
o Variance of Y 0.45 0.46
a2 measurement errof variance 0.023 0.002

4.3 Estimation of The Unknown Theory Constants (c*).

The following (4.2) presents the results of ¢* estimation
- the ones of most interest, In computing the RSS of (3.3),
each machine was treated independently (mainly because they
have different geometry and different design region). Thus
we used the objective function in optimization to find ¢* as
a sum of the corresponding function in (3.3) for each
tokamak. We used a quasi-newton optimization routine to
find ¢*, Several starting values were tried to avoid the local
minima,

Our NLS estimates of ¢* using a fitted model are:

&1 =0.140, &> = 2.282,
£, =2.397, & = 0.546. (42)

From the main effects study on the computer data, we at
least know that ¢,* and ¢,* are almost unestimable because c;
and C; have a little effect on log,ﬁ_.

So the estimates of c; and c: is not reliable at this time.

Figure 2 shows residual plot (residual vs. predicted values).
5. Concluding Remarks

We have considered nonlinear least squares estimation of
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Figure 1. Main effect plots with variations for ASDEX tokamak simulator drawn by the ACE method.
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Figure 2. Residual vs. Y plot for tokamak experimetal data. Octagon - ASDEX, cross - PDX.

the unknown constants using the Kriging prediction models
which were fitted by the computer data, So this method is
different from the ordinary nonlinear regression
where a known regression function is used instead of a
predictor, Thus we need some justifications that the estimation
method work well in estimating the true constants. The
simulation study using some toy-models reported in Park[6]
suggest that it does not work badly. As we are aware of no
drectlv relevant asymptotic (or finite sample) theory to justify
our approach (the estimation and confidence intervals), it is
an open problem to show the statistical properties of ¢ such
as the consistency and the asymptotic normality, This work
may provide the standard error formula for the estimated
constants,

We do not claim that the methodology presented here is
the final answer, but
it seems to be a good start, Based on the assumed normality
of the responses of computer experiments, Park[6] considered
maximum likelihood estimations
of the unknown constants using both data. The results of
this research will be shown in another article (Cox, Park,
and Singer, 1992). If there is prior knowledge about the

.
constant vector ¢, the Bayesian estimation approach may be

reasonable. It is anticipated that still other methods will be
proposed in the future,

The methodology we have proposed here may prove useful
in other applications
in other disciplines where the unknown constants in a theory
must be estimated using complex computer simulation codes

and real experimental data,
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