• Title/Summary/Keyword: linear parameter varying controller

Search Result 60, Processing Time 0.033 seconds

Optimal Temperature Tracking Control of a Polymerization Batch Reactor by Adaptive Input-Output Linearization

  • Noh, Kap-Kyun;Dongil Shin;Yoon, En-Sup;Rhee, Hyun-Ku
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.62-74
    • /
    • 2002
  • The tracking of a reference temperature trajectory in a polymerization batch reactor is a common problem and has critical importance because the quality control of a batch reactor is usually achieved by implementing the trajectory precisely. In this study, only energy balances around a reactor are considered as a design model for control synthesis, and material balances describing concentration variations of involved components are treated as unknown disturbances, of which the effects appear as time-varying parameters in the design model. For the synthesis of a tracking controller, a method combining the input-output linearization of a time-variant system with the parameter estimation is proposed. The parameter estimation method provides parameter estimates such that the estimated outputs asymptotically follow the measured outputs in a specified way. Since other unknown external disturbances or uncertainties can be lumped into existing parameters or considered as another separate parameters, the method is useful in practices exposed to diverse uncertainties and disturbances, and the designed controller becomes robust. And the design procedure and setting of tuning parameters are simple and clear due to the resulted linear design equations. The performances and the effectiveness of the proposed method are demonstrated via simulation studies.

State Feedback Stabilization of Network Based Control Systems with Time-varying Delay (시변시간지연을 가지는 네트워크 기반 시스템의 상태궤환 안정화)

  • Jung Eui-Heon;Shu Young-Su;Lee Hong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.741-746
    • /
    • 2004
  • When investigating a control problem for network based control systems, the main issue is network-induced delay. This delay can degrade the performance of control systems designed without considering the delay and even destabilize the system. In this paper, we consider the stabilization of network based control systems, where there is bounded time-varying delay. This delay is treated like parameter variation of a discrete time system. The state feedback controller design is formulated as linear matrix inequality. Finally, we show that the stability of control systems designed with considering the delay is superior to that is not so.

Robust $H_\infty$ Output Feedback Control of Descriptor Systems with Parameter Uncertainty and Time dDelay (파라미터 불확실성과 시간지연을 가지는 특이시스템의 견실 $H_\infty$ 출력궤환 제어)

  • 김종해
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.9-16
    • /
    • 2004
  • This paper provides an observer-based Η$\infty$ output feedback controller design method for descriptor systems with time-varying delay by just one LMI(linear matrix inequality) condition. The sufficient condition for the existence of controller and the controller design method are presented by perfect LMI approach which can be solved efficiently by convex optimization. The design procedure involves solving an LMI. Since the obtained condition can be expressed as an LMI form all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement changes of variables, and singular value decomposition. Moreover, The proposed controller design algorithm can be extended to the observer-based robust Η$\infty$ output feedback controller design method for descriptor systems with parameter uncertainty and time delay. An example is given to illustrate the results.

Fuzzy PD plus I Controller of a CSTR for Temperature Control

  • Lee, Joo-Yeon;So, Hye-Rim;Lee, Yun-Hyung;Oh, Sea-June;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.563-569
    • /
    • 2015
  • A chemical reaction occurring in CSTR (Continuous Stirred Tank Reactor) is significantly affected by the concentration, temperature, pressure, and reacting time of materials, and thus it has strong nonlinear and time-varying characteristics. Also, when an existing linear PID controller with fixed gain is used, the performance could deteriorate or could be unstable if the system parameters change due to the change in the operating point of CSTR. In this study, a technique for the design of a fuzzy PD plus I controller was proposed for the temperature control of a CSTR process. In the fuzzy PD plus I controller, a linear integral controller was added to a fuzzy PD controller in parallel, and the steady-state performance could be improved based on this. For the fuzzy membership function, a Gaussian type was used; for the fuzzy inference, the Max-Min method of Mamdani was used; and for the defuzzification, the center of gravity method was used. In addition, the saturation state of the actuator was also considered during controller design. The validity of the proposed method was examined by comparing the set-point tracking performance and the robustness to the parameter change with those of an adaptive controller and a nonlinear proportional-integral-differential controller.

Optimal Guaranteed Cost Control of Linear Uncertain Systems with Input Constraints

  • Yu Li;Han Qing-Long;Sun Ming-Xuan
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.397-402
    • /
    • 2005
  • The guaranteed cost control problem for a class of linear systems with norm-bounded time-varying parameter uncertainties and input constraints is considered. A sufficient condition for the existence of guaranteed cost state feedback controllers is derived via the linear matrix inequality (LMI) approach, and a design procedure to guaranteed cost controllers is given. Furthermore, a convex optimization problem is formulated to determine the optimal guaranteed cost controller. An example is given to illustrate the effectiveness of the proposed results.

Gain Scheduled Control for Disturbance Attenuation of Systems with Bounded Control Input - Theory (제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이득 스케쥴 제어 - 이론)

  • Kang Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.81-87
    • /
    • 2006
  • A new gain-scheduled control design is proposed to improve disturbance attenuation for systems with bounded control input. The state feedback controller is scheduled according to the proximity to the origin of the state of the plant. The controllers is derived in the framework of linear matrix inequality(LMI) optimization. This procedure yields a linear time varying control structure that allows higher gain and hence higher performance controllers as the state move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

Robust and Reliable $H_\infty$ Control for Linear Systems with Parameter Uncertainty (파라메타 불확실성을 갖는 선형시스템에 대한 강한 신뢰 $H_\infty$제어)

  • 서창준;김병국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.498-503
    • /
    • 1993
  • In this paper, a robust and reliable H$_{\infty}$ control problem is considered for linear uncertain systems with time-varying norm-bounded uncertainty in the state matrix, which performs well despite of actuator outages. Using linear static state feedback and the quadratic stabilization with H$_{\infty}$-norm bound, a robust and reliable H$_{\infty}$ controller is obtained that stabilizes the plant and guarantees an H$_{\infty}$-norm bound constraint on disturbance attenuation for all admissible uncertainties and normal state as well as faulty state of actuators. It provides a sufficient condition for robust and reliable stabilization with H$_{\infty}$-norm bound. Reliability is guaranteed provided actuator outages only occur within a prespecified subset of actuators.tors.

  • PDF

A Gain-Scheduled Autopilot Design for a Bank-To-Turn Missile Using LMI Optimization and Linear Interpolation

  • Shin, Myoung-Ho;Chung, Myung-Jin;Lee, Chiul-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.48.3-48
    • /
    • 2001
  • A gain-scheduled autopilot design for a bank-to-turn (BTT) missile is developed by using the Linear Matrix Inequality (LMI) optimization technique and a state-space lineal interpolation method. The missile dynamics are brought to a quasilinear parameter varying (quasi-LPV) form. Robust linear control design method is used to obtain state feedback controllers for the LPV systems with exogenous disturbances at the frozen values of the scheduling parameters. Two gam-scheduled controllers for the pitch axis and the yaw/roll axis are constructed by linearly interpolating the robust state-feedback gains. The designed controller is applied to a nonlinear six-degree-of-freedom (6-DOF) simulations.

  • PDF

New Approach of Time-varying Switching Hyperplane in Multivariable Variable Structure Control Systems (다변수 가변구조 제어 시스템에서 시변 스위칭 초평면의 새로운 시도)

  • Lee, Ju-Jang;Kim, Jong-Jun;Kim, Eun-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.402-406
    • /
    • 1990
  • A new approach of a time-varying switching hyperplane based on the theory of variable structure system (VSS) is proposed for the control of multivariable systems. While the conventional switching surface can net achieve the robust performance against parameter variations and disturbances before the sliding mode occurs, the proposed switching hyperplane, which is obtained from the eigen-structure assignment theory powerfully used in the linear multivariable systems, ensures the sliding mode from the initial state. And new continuous control input which guarantees the sliding mode is proposed. This new control input does not arise chattering problem which arises with the conventional control input of variable structure control systems. Through numerical examples, the expellant performances of the proposed controller are verified.

  • PDF

Application of Adaptive Control Theory to Nuclear Reactor Power Control (적응제어 기법을 이용한 원자로 출력제어)

  • Ha, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.336-343
    • /
    • 1995
  • The Self Tuning Regulator(STR) method which is an approach of adaptive control theory, is ap-plied to design the fully automatic power controller of the nonlinear reactor model. The adaptive control represent a proper approach to design the suboptimal controller for nonlinear, time-varying stochastic systems. The control system is based on a third­order linear model with unknown, time-varying parameters. The updating of the parameter estimates is achieved by the recursive extended least square method with a variable forgetting factor. Based on the estimated parameters, the output (average coolant temperature) is predicted one-step ahead. And then, a weighted one-step ahead controller is designed so that the difference between the output and the desired output is minimized and the variation of the control rod position is small. Also, an integral action is added in order to remove the steady­state error. A nonlinear M plant model was used to simulate the proposed controller of reactor power which covers a wide operating range. From the simulation result, the performances of this controller for ramp input (increase or decrease) are proved to be successful. However, for step input this controller leaves something to be desired.

  • PDF