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Optimal Guaranteed Cost Control of Linear Uncertain Systems
with Input Constraints

Li Yu, Qing-Long Han, and Ming-Xuan Sun

Abstract: The guaranteed cost control problem for a class of linear systems with norm-
bounded time-varying parameter uncertainties and input constraints is considered. A sufficient
condition for the existence of guaranteed cost state feedback controllers is derived via the linear
matrix inequality (LMI) approach, and a design procedure to guaranteed cost controllers is
given. Furthermore, a convex optimization problem is formulated to determine the optimal
guaranteed cost controller. An example is given to illustrate the effectiveness of the proposed

results.
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1. INTRODUCTION

The problem of designing robust controllers for
systems with model uncertainty has drawn considerable
attention in recent control system literature. Much
effort has been directed towards finding a controller in
order to guarantee robust stability [1-3]. However,
when confrolling a real plant, it is also desirable to
design a controller which not only makes the closed-
loop system asymptotically stable but also guarantees
an adequate level of performance. One approach to
this problem is the so-called guaranteed cost control
approach given by Chang and Peng [4]. This approach
has the advantage of providing an upper bound on a
given performance index and thus the system
performance degradation incurred by the model
parameter uncertainties is guaranteed to be less than
this bound. Based on this idea, many significant
results have been proposed [5-10]. In particular,
Petersen and McFarlane [6] introduced a notion of
quadratic guaranteed cost control which extends the
notion of quadratic stabilizability to allow for a
quadratic performance index and presented a Riccati
equation approach for designing quadratic guaranteed
cost controllers. Yu ef al. [9] presented a linear matrix
inequality (LMTI) approach for the design of guaranteed
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cost controller, and the design problem of optimal
guaranteed cost controller, which minimizes the
associated guaranteed cost, was formulated as a
convex optimization problem with LMI constraints.

On the other hand, all physical control systems have
to operate under constraints on the magnitude of the
control input due to the physical limitations of actuators.
These limitations in terms of input constraints must be
considered in the controller design. Otherwise the
desired closed-loop system performance cannot be
guaranteed and even the closed-loop system will
become unstable. Therefore, it is necessary to consider
input constraints in the design of the guaranteed cost
controllers. However, at the knowledge of the authors,
the guaranteed cost control problem for uncertain
system subject to input constraints has been received
very little attention in literature.

This paper is concerned with the guaranteed cost
control problem for a class of uncertain systems
subject to input constraints. The model parameter
uncertainties are assumed to be time-varying and
norm-bounded. Conditions for the existence of state
feedback guaranteed cost controllers satisfying the
given constraints are derived via the LMI approach.
Furthermore, a convex optimization problem with
LMI constraints is presented to design the optimal
guaranteed cost controller of uncertain systems with
input constraints. Finally, an example is given to
illustrate the proposed results, and the comparison
with the existing results is made.

2. PROBLEM AND PRELIMINARIES

Consider the following linear uncertain systems:
x(t) ={A4+ AA4d]x(¢) +[B + ABlu(t), ()
x(0) =xp,
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where x(¢)e R" is the state vector, u(¢)e R" is the

control input vector, 4 and B are known constant real
matrices of appropriate dimensions, A4 and AB are
real valued matrix functions representing time-varying
parameter uncertainties in the system model. The
control input # in system (1) is subjected to the
following constraints:

4, <u, <u,, i=1,2,-,m, )

i

where u; is the i th element in the control input », u;,
i=1,2,---,m are known constants.

The parameter uncertainties under consideration
here are assumed to be norm-bounded and of the form

[AA AB]:DF(t)[El Ez]s 3)

where D, E,, E, are known constant real matrices of
appropriate dimensions, which represent the structure
of uncertainties, and F(r)e R™ is an unknown

matrix function with Lebesgue measurable elements
and satisfies

FT(OF@)<I, “)

in which 7 denotes the identity matrix of appropriate
dimension. The uncertainties is said to be admissible if
they satisfy the relations (3) and (4).

Associated with the system (1) is the cost function

J= f [xT (DOx(t) +u” (H)Ru(0))dt , 5)

where O and R are given positive-definite symmetric
matrices.

Definition: A memoryless state feedback control
law  u(f)=Kx(t) is said to be a quadratically

guaranteed cost controller of system (1) with cost
function (5) if there exists symmetric positive definite

matrix P e R™" such that
O+ KTRK + P[4+ BK + DF(E, + E,K))

(6)
+[A+BK + DF(E, + E,K)]' P <0

for all admissibie uncertainties.

Lemma 1 [6]: If u(r) = Kx(f) is a quadratically
guaranteed cost controller of system (1) with cost
function (5), then the closed-loop uncertain system

x(t)=[A+ BK + DF(E, + E,K)]x(t) (7

is quadratically stable, and the cost function value of
the closed-loop system is no more than J~ = xOT Px,,
which is said to be a guaranteed cost of system (1).
From the proof of Lemma 1, it follows that the
matrix P is a Lyapunov matrix of the closed-loop
system with the controller u(¢) = Kx(#). Furthermore, a

guaranteed cost of system (1) can be determined in
terms of the matrix P and the initial state. It is clear
that such a guaranteed cost depends on the choice of
guaranteed cost controllers. In particular, the guaran-
teed cost controller to minimize the corresponding
guaranteed cost is more interesting, such a controller
is said to be the optimal guaranteed cost controller.

The objective of this paper is to develop a
procedure to designing the optimal guaranteed cost
controller for the system (1) subject to input
constraints.

3. MAIN RESULTS

We first present the following result:

Theorem 1: If there exist a positive scalar a, a
matrix K and symmetric positive definite matrices P
and Z such that the matrix inequality (6) holds for all
admissible uncertainties and

xgPx, <a, (®)
Z K

k" op)?” ®

(Z); <ul, i=1,2,-,m. (10)

Then u(f) = Kx(f) is a quadratically guaranteed cost
controller satisfying the constraint (2) of the system (1).

Proof: It follows from the condition of this theorem
and Lemma 1 that u(f) = Kx(f) is a quadratically
guaranteed cost controller of the system (1) and the
matrix P is a Lyapunov matrix of the associated
closed-loop system. Therefore, the inequality (8)
implies that the closed-loop state trajectory x(¢)

satisfies x” ()Px()<a.

By the Schur complement, it follows that the matrix
inequality (9) is equivalent to akKP 'K’ < Z . Denote
the 7 row of the matrix K by K|, then

i, (O = |Kx()} = |1<,.P*1/ 2pl/ zx(t)'z
<[ Pl

=K,P KT (0 Px(r)
<K,P'Kla<(2);.

From the inequality (10) we can conclude that the
control law u(f) = Kx(f) satisfies the constraint (2).
This completes the proof of the theorem.

The following theorem is the main results of this
paper.

Theorem 2: If there exist positive scalars « and
£, a matrix Y and symmetric positive definite
matrices X and Z such that the following matrix
inequalities hold:
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Q X Yy"  (EX+E,)\)
-1
X —aQ 0 0 <0,
Y 0 -aR™ 0
EX+EY 0 0 —l
(11)
T
RN (12)
X, X
Z Y
>0, 13
2] o
(2); <u}, i=1,2,-,m, (14)

where Q= AX + BY + (4AX + BY)" +eDD" , Then

u()=YX 'x(f) is a quadratically guaranteed cost
controller satisfying the constraint (2) of the system
(1), and the cost function of the corresponding closed-
loop system satisfies J <.

Proof: Pre- and post-multiplying the left-hand side
of the matrix inequality (9) by matrix diag{/, aP™'}
imply that the matrix inequality (9) is equivalent to

VA akP™
e e 0

By denoting X =aP™' and Y =KX , the matrix
inequality (13) is immediately obtained from the
inequality (15). Pre- and post-multiplying the left-
hand side of the matrix inequality (6) by matrix

a*P', it follows that the matrix inequality (6) is
equivalent to

aP?'OP" +aP ' K" RKP™ +a[ A+ BK+DF(E,
+E,K)JP" +aP™'[4+ BK+DF(E, + E,K)]" <0,
" which can be further written as

a ' XOX +a 'Y RY + AX + BY +(AX +BY)!
+DF(E\X + E,Y) +[DF(E X + E;V)I" <0.

By the Schur complement, the above matrix
inequality is equivalent to

AX +BY +(4X +BY) X YT
X —aQ™' 0
Y 0 -aR’!
D
+ 0 |F[EX+EY 0 0]
0
D T
HfEX+EY o of FTlo| <o.
0

It follows from Lemma 1 in [10] that the above matrix
inequality is true for all F satisfying F Trp<l if
and only if there exists a positive scalar & such that

AX + BY +(AX + BY)T X Vel

X -0 0

Y 0 -aR™
Dol
+& 010
0lo

+e'[EX+EY 0 O [EEX+EyY 0 0]<0.

Quoting the Schur complement again, the above
matrix inequality is equivalent to the matrix inequality
(11). Finally, from the Schur complement and
X =aP™', it follows that the inequality (8) is
equivalent to the matrix inequality (12). Therefore, the
results of Theorem 2 can be obtained from Theorem 1,
which completes the proof of the theorem.

(11)-(14) is a linear matrix inequality system in
e, a,X,Y,Z and defines a convex set of (&, @, X X 2).
Hence, the existing convex optimization techniques
such as interior-point algorithms can be used to test
whether this set is nonempty and to generate particular
solutions if the LMI system is feasible. Moreover, its
solutions parametrize the set of guaranteed cost
controllers. This parametrized representation of
guaranteed cost controllers can be exploited to design
the guaranteed cost controllers with some additional
requirements. In particular, we shall use this
representation to present a design procedure for the
optimal guaranteed cost controller that minimizes the
guaranteed cost of the closed-loop uncertain system.

According to the Theorem 2, the design problem of
the optimal guaranteed cost controller can be
formulated as the following optimization problem:

min «a (16)
s.t. (11), (12), (13), (14).

If the problem (16) has an optimal solution &, a, X
Y,Z, then u(r)=YX 'x(¢) is the optimal guaranteed
cost controller satisfying the constraint (2).

It is clear that the problem (16) is a convex
optimization problem with LMI constraints. Therefore,
the global minimum of the problem can be reached if

it is feasible, and it can be easily solved by using the
solver mincx in the LMI Toolbox of MATLAB.

4. BLOCK-DIAGONAL PARAMETER
UNCERTAINTY

In the section we use the above results to solve the
guaranteed cost control problem for systems with
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block-diagonal time-varying parameter uncertainties
and input constraints.

Consider the uncertain system (1) with the
parameter uncertainty described by (3)-(4). Suppose
that the uncertain matrix F(¢) is of the following

block-diagonal form:

F(t) = diag{F, (),F, (1) Fy (1)}, (17)

where F,(f)e R** and satisfies

FOF,W0O<I, .

k=1,2, -, 1,

in which I,

% identity matrix.

denotes j, x j,

Then, for any constant vector

8:[51 &y gl]’ gk>0, k:L 2’”"1'
Define

M = diag{gllilxil 52]i2><i2 > 77T gIIIIXll }

~ . 1 -1 -1

N=d1ag{£1 I]lel & 1j2Xj2’ s IJIXJI}

Obviously, we have
DF()E, E,]=DMF(®NE, NE,|.

The following theorem provides a solution to the
design problem of the optimal guaranteed cost
controller for systems with block-diagonal time-
varying parameter uncertainties and input constraints.

Theorem 3: If the following convex optimization
problem

s (18)
[0, X YT ol DM
X -a0’ 0 0 0
st.() | ¥ 0 -aR7 0 0 |<0
Q, 0 0 -N 0
\MD”T 0 0 0 -M|

(ii) (12), (13), (14)

has a solution ¢, a, X,Y, Z, where

Q, = AX + BY +(AX + BY)",
Q,=EX+E,)Y.

Then u(f) =YX 'x(t) is the optimal guaranteed cost
controller satisfying the constraint (2) of the system
(1) with block-diagonal time-varying parameter
uncertainties (17). Where

‘9:[51 &y 511’
M dlag{gl 1><1 ’ 82112xi2’ ) glli,xi, }’
N =d1ag{gl L 821 gy s 811 m,}

Althouth the problem (16) can be also used to solve
the guaranteed cost control problem for systems with
block-diagonal parameter uncertainties, Theorem 3
will give a less conservative results due to the

introduction of free parameters ¢, &,, -+, & .

5. ILLUSTRATIVE EXAMPLES

Consider the same example as in [11]. This
example represents an uncertain model of the
dynamics of a helicopter in a vertical plane. The
uncertain dynamical model is as follows:

x=(A+nA +r,d)x+(B+s,B)u, x(0)=x,,(19)

where
[-0.0366 0.0271 0.0188 —0.4555
e 0.0482 —1.01 0.0024 -4.0208
"1 0.1002 02855 -0.707 1.3229 |’
0
[0.4422  0.1711 1
3.0447 —75922 1
B: x(): ’
552  4.99 1
i 1
0 0 0]
0 0 00
A1: N
0 02192 0 0
0 0 0 0]
000 0 | 0 0
000 0 1.0673 0
A2= s B]Z 5
0 0 0 12031 0 0
000 0 | 0 0
-1<K <1, -1<p <], —1<s <l

The control input # in system (19) is subjected to

the following constraints:
-1<u, <1, i=12

the associated performance index is

J= f(xTQx +u” Ru)dt,

where
1 0 0 O

0|0 100 L fro
oo 1 0o |01
0 0 0 1

Define

F =diag{r,, r,, 5}
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000
po|0 0 1]
110
00 0
0 02192 0 0
E=|0 0 0 12031],
0 0 0 0
0 0
E,=| 0 0
1.0673 0

Then (19) can be rewritten as
x(t)=(A4+DFE)x(t)+ (B+DFE,)u(t) .

This is a system with block-diagonal time-varying
parameter uncertainties. By applying Theorem 3 and
solving the corresponding optimization problem (18),
we obtain the optimal guaranteed cost controller

—0.0885 0.2062 03237  0.3287
u(t) = x(1)

0.0515 0.1619 -0.0686 —0.5525
(20)
and the gua*ranteed cost of the uncertain closed-loop
system is J = 6.2041.
If we do not consider the input constraints, Yu ef al.
(1999) gave the optimal guaranteed cost controller
-0.6721 0.1921 0.8604 1.1844
u(t) = X

0.3406 1.0065 —-0.2986 -1.2138
21

0.4}
02} i

03} i

u2

04k

-0.5

-0.6

-0,70

[ 2 3 ) 5 3 7 B

Fig. 1. Control law.

and the guaranteed cost of the uncertain closed-loop
system is J = 5.3124.

To compare the effect of the controllers (20) and
(21) by simulation, we assume that s, =sin¢,

r,=sin2t, r, =sin3¢t. The control law (20) (solid

line) and (21) (dot line) are shown in Fig. 1. The state
variables of corresponding closed-loop systems are
shown in Fig. 2. Where the solid lines stand for the

2 4 6 8 10
t(sec)

Fig. 2. The closed-loop state variables.
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state variables of the closed-loop system resulted from
controller (20), and the dot lines denote ones of the
closed-loop system resulted from the controller (21).
It can be seen from Fig.1 that the magnitudes of the
input variables u, and u, in the controller (20) are

significantly reduced due to considering the input
constraints (2) in the design.

6. CONCLUSIONS

In this paper, we have presented an LMI based
approach to the optimal guaranteed cost control
problem via state feedback control laws for a class of
uncertain systems. Contrast to the Riccati equation
based approach, this approach has the advantage that
no tuning of parameters and/or matrices is involved,
and some additional requirements and constraints can
be effectively treated.

REFERENCES

[1] B. R. Barmish, “Stabilization of uncertain
systems via linear control,” [EEE Trans. on
Automatic Control, vol. 28, no. 3, pp. 848-850,
March 1983.

[2] P. P. Khargonekar, 1. R. Petersen, and K. Zhou,
“Robust stabilization of uncertain linear
systems: Quadratic stabilizability and H,, control
theory,” IEEE Trans. on Automatic Control, vol.
35, no. 3, pp. 356-361, March 1990.

[3] I R. Petersen, “A stabilization algorithm for a
class of uncertain systems,” Systems & Control
Letters, vol. 8, no. 3, pp. 181-188, 1987.

[4] S. S. L. Chang and T. K. C. Peng, “Adaptive
guaranteed cost control of systems with
uncertain  parameters,” [EEE Trans. on
Automatic Control, vol. 17, no. 4, pp. 474-483,
April 1972,

[5] D. S. Bernstein and W. M. Haddad, “Robust
stability and performance via fixed-order
dynamic compensation with guaranteed cost
bounds,” Math. Contr. Signals and Systems, vol.
3,no. 2, pp. 139-163, June 1990.

[6] I R. Petersen and D. C. McFarlane, “Optimal
guaranteed cost control and filtering for
uncertain linear systems,” [EEE Trans. on
Automatic Control, vol. 39, no. 9, pp. 1971-
1977, September 1994,

[71 L R. Petersen, D. C. McFarlane, and M. A.
Rotea, “Optimal guaranteed cost control of
discrete-time  uncertain  linear  systems,”
International Journal of Robust & Nownlinear
Control, vol. 8, no. 7, pp. 649-657, July 1998.

[8] L. Yu and J Chu, “An LMI approach to
guaranteed cost control of linear uncertain time-
delay systems,” Automatica, vol. 35, no. 6, pp.
1155-1159, June 1999.

97 L. Yu, G Chen, and M Yang, “Optimal
guaranteed cost control of linear uncertain
systems: LMI approach,” Proc. of the 14th IFAC
World Congress, vol. G, pp. 541-546, 1999.

[10] L. Yu and F Gao, “Optimal guaranteed cost
control of discrete-time uncertain systems with
both state and input delays,” Journal of the
Franklin Institute, vol. 338, no. 1, pp. 101-110,
January 2001.

[11] A. Fishman, J. M. Dion, L. Dugard, and A. T.
Neto, “A linear matrix inequality approach for
guaranteed cost control,” Proc. of the 13th IFAC
World Congress, pp. 197-202, 1996.

Li Yu received the B.S. degree in
Control Theory from Nankai University
in 1982, and the M.S. and Ph.D. degrees
from Zhejiang University, Hangzhou,
China. He is currently a Professor in the
College of Information Engineering,
Zhejiang  University of Technology,
China. His research interests include
robust control, time-delay systems,
decentralized control.

Qing-Long Han received the B.S.
degree in Mathematics from the
Shandong Normal University, Jinan,
China, in 1983, and the M.E. and Ph.D.
degrees in Information Science from
the East China University of Science
and Technology, Shanghai, China, in
1992 and 1997, respectively. From
September 1997 to December 1998, he
was a Post-Doctoral Researcher Fellow at LAII-ESIP,
Université de Poitiers, France. From January 1999 to
August 2001, he was a Research Assistant Professor in the
Department of Mechanical and Industrial Engineering,
Southern Illinois University at Edwardsville, USA. In
September 2001 he joined the Faculty of Informatics and
Communication, Central Queensland University, Australia,
where he is currently a Senior Lecturer. His research
interests include time-delay systems, robust control,
networked control systems, complex systems and software
development processes.

Ming-Xuan Sun received the Ph.D.
degree from Nanyang Technological
University, Singapore, in 2002. He is
currently a Professor in the College of
Information  Engineering, Zhejiang
University of Technology, China. His
main research interests include iterative
learning control and optimal control.



