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Optimal Temperature Tracking Control of a Polymerization Batch
Reactor by Adaptive Input-Output Linearization

Kap Kyun Noh, Dongil Shin, En Sup Yoon, and Hyun Ku Rhee

Abstract: The tracking of a reference temperature trajectory in a polymerization batch reactor is a common problem and has critical
importance because the quality control of a batch reactor is usually achieved by implementing the trajectory precisely. In this study,
only energy balances around a reactor are considered as a design model for control synthesis, and material balances describing con-
centration variations of involved components are treated as unknown disturbances, of which the effects appear as time-varying pa-
rameters in the design model. For the synthesis of a tracking controller, a method combining the input-output linearization of a time-
variant system with the parameter estimation is proposed. The parameter estimation method provides parameter estimates such that
the estimated outputs asymptotically follow the measured outputs in a specified way. Since other unknown external disturbances or
uncertainties can be lumped into existing parameters or considered as another separate parameters, the method is useful in practices
exposed to diverse uncertainties and disturbances, and the designed controller becomes robust. And the design procedure and setting
of tuning parameters are simple and clear due to the resulted linear design equations. The performances and the effectiveness of the
proposed method are demonstrated via simulation studies.

Keywords: nonlinear systems control, polymerization reaction, time-variant input-output linearization, parameter estimation, refer-

ence trajectory tracking control

I. Introduction

The transition from the bulk to the small-volume specialties
of versatile properties designed to specific purposes has been a
trend in the industry{1]. Batch processes have much more
flexibility than continuous processes and so they will be pre-
ferred to be a candidate to cope with the changes. But, batch
processes, particularly batch reactor in which polymerization
reactions proceed with time, have several challenging prob-
lems in the control point of view such as i) due to dynamic
characters in its nature, how to operate over the entire batch
cycle should be designed a priori, ii) they are exhibiting severe
nonlinear features and those in CSTR are well known{2][3],
iii) it is difficult to have a proper model describing the effects
of high viscosities on both the heat transfer through a cooling
system and complex reaction kinetics, and iv) real time sen-
sors for the quality of polymer products are lacking. Only
simple temperatures are usually available. Therefore, the po-
lymerization batch reactor can be posed as a nonlinear time-
varying system with uncertainties induced from the inaccurate
model and lacked sensor availability.

Meanwhile, for the last two decades, considerable develop-
ments have been made in the nonlinear systems theory
evolved from the differential geometry[4] and a few applica-
tions to a polymerization batch reactor have been reported.
The GLC(Globally Linearizing Control) method proposed by
Kravaris and Chung[5] was applied to a polymerization reac-
tor via simulation[6] and experimentaily [7] and with inter-

Manuscript received: Apr. 9, 2001, Accepted: Oct. 31, 2001.
Kap Kyun Noh: School of Chemical Engineering, Seoul National
University (kknoh@pslab.snu.ac.kr)
Dongil Shin: School of Chemical Engineering, Seoul National Univer-
sity (dongil@pslab.snu.ac.kr)
En Sup Yoon: School of Chemical Engineering, Seoul National Uni-
versity (esyoon@pslab.snu.ac.kr)
Hyun Ku Rhee: School of Chemical Engineering, Seoul National
University (hkrhee@snu.ac.kr)
3 We thank the financial aid to this research from the Brain Korea 21
Program supported by the Ministry of Education and the Nationai
Research Lab Grant of the Ministry of Science & Techndogy.

preted as a feedforward-feedback method for the system with
a relative order of one, applied to a copolymerization reac-
tor{8]. The external PID controller in the GLC was required to
compensate for model errors and unknown disturbances. The
adaptive control method for input-output linearizable systems
with constant parametric uncertainty of Sastry and Isidori[9]
was applied to track the monomer conversion trajectory along
with an EKF(Extended Kalman Filter)[27] for unavailable
states[10]. Adaptive control based on a linear approximate
model was also implemented by researchers[11][12][13].

In this study, the control problem of tracking an optimal ref-
erence temperature trajectory in a polymerization batch reactor
will be considered. The control synthesis will be carried out
based on the reduced design model, derived from the energy
balances, with parametric time varying uncertainties describing
the effects of the excluded material balances, constitutive rela-
tionships and additional process uncertainties on the design
model. Due to the introduction of time varying parameters and
their nonlinear characteristics, the proposed method is a combi-
nation of the nonlinear time varying input-output linearization
with on-line parameter estimation. In the following sections,
MMA(MethylMetha Acrylate) polymerization reaction in a
batch reactor as an application system, and a time variant input-
output linearization and a parameter estimation for an adaptive
linearization will be described. Finally, simulation results for
illustrating the effectiveness of the method will be discussed.

I1. Polymerization reaction in a batch reactor

The kinetics of a free radical solution polymerization reac-
tion is relatively well known[14] and shown in Table 1. The
reaction system consists of MMA(MethylMethaAcrylate) as a
monomer, Benzene as a solvent, and AIBN as an initiator,
respectively.

The mathematical model for the polymerization reaction in
a batch reactor consists of 1) the material balances based on the
reaction kinetics, ii) the energy balances around the reactor
configuration, and iii) constitutive equations describing the gel
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Table 1. Reaction kinetics of the MMA free radical polymeri-
zation
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and glass effects, an overall heat transfer coefficient, the rate
constants, physical properties, etc. Under some standard as-
sumptions, the resulted model is in Table 2 and the constitu-
tive equations regarding the rate constants and physical prop-
erties can be found in the literature[14]. Note that the quasi-
steady-state assumption(QSSA) is applied to only primary
radicals from the initiator decomposition, not to polymer radi-
cals. Extension of QSSA to the polymer radicals breaks down
at a high conversion[15]. The MWD(Molecular Weight Distri-
bution) of the produced polymers is approximated by a few
momerts as is often the case.

The model can be divided into two parts: the one consists of
the mass balances and constitutive equations, of which the
states are not usually available and it forms a basis of deter-
mining the reference trajectory of section III, and the other is
the energy balances, which are described in temperatures as
states, and it forms a design basis for implementing the refer-
ence trajectory. The former will be referred to as a disturbance
model and the latter as a design model. The controller for a
tracking is designed on the design model, while the distur-
bance model is treated as unknown with respect to the design
model. The couplings between two submodels are displayed
through a polymerization reaction heat and an overall heat
transfer coefficient, both of which are treated as unknown
parameters in the design model. They are time-varying and
severely nonlinear, which make it difficult to implement the
trajectory and so requires a nonlinear control method capable
of dealing with time-varying uncertainties. If the accurate
disturbance model is available, the knowledge should be fully
utilized in the synthesis of the controller. But, especially in the
industrial reactor, this is not feasible.

A major nonlinear characteristic in a free radical polymeri-
zation is the presence of autoacceleration, called the gel effect,
in the course of polymerization reaction[16]. The gel effect
represents the effect of decreasing diffusivity of the live poly-
mer radicals due to increasing viscosity of the reaction mass
on the termination rate constant, k, and is exhibited as a
sharp increase in the monomer conversion and total polymer
radicals concentration as well as the weight- averaged molecu-

Table 2. Model for the polymerization reaction in a batch reac-
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lar weight with time. At the time which the gel effect starts, a
peak in the heat of reaction begin to appear and the peak of
the bell-shaped reference trajectory are also required to lower
the molecular weight of polymers. At higher monomer con-
versions, the propagation reaction also becomes diffusion-
controlled(glass effect). To incorporate the gel and glass ef-
fects into the model, the gel and glass effect models developed
by Chiu et al.[15] are used and shown in Table 3.
The heat of reaction generated during the polymerization is

-AH
AHp =) —E& ke xx, M
pCpVR

where AH, is the heat of propagation reaction andx, ,x,
are concentrations of the monomer and total live polymer
radicals, respectively. To estimate the reaction heat, two states
are needed. The states can be estimated by a state estimator
such as EKF(Extended Kalman Filter)[17] or by an open-loop
model as a feedforward disturbance estimator[8]{10].

As the polymerization reactions proceed and the concentra-
tions of produced polymer chains increase, the viscosity of the
reacting medium increases significantly and sharply at the
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onset of the gel effect, which results in a sharp decrease of the
overall heat-transfer coefficient, U . This poses a difficult con-
trolling problem along with the low thermal conductivity of
the formed polymer. To account for this, the empirical correla-
tion by Soroush and Kravaris[7] is adopted for simulation. The
heat transfer coefficient is assumed to be a function of the
monomer conversion only as follows.

Table 3. Model for the Gel and Glass Effects in a MMA Po-
lymerization[15]

k k,

kp = P kx — o
L KnO% KO,
C c
0 = exd T | = 5 54455106 exef 27-788keall gmol | (min)
p Y RT, - ———-RT,(
) =£ex{i}:”54&10_226x{34730ccalgm01] (mol/] min)
UL A RY,

A=0.168-821x107(T, ~T,,)’ B =0.03

2.303(1-9
C= exp __(___p)

A+B(1-®,)
In the dimensionless form
k K, T _

» =—*”;)—“T:K (T %, %)
k., 90,Ke, (DK, (TR, ’
CE\()
K, (T _
£=——L—.T=K‘(T,}4,},O)
K Ko (DK, D
C"TIU

A=0.168-821x10°T,*(T, - T,,) B =003

_ (23030-0,)
¢ _eXp[A+B(1—d>p)]

where A, :Total Conc. of the Live Polymer Radicals, [/ 1, :Initial Conc.
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Constants of the Propagation and Termination Reaction at 1o donva-
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’ ?
T, :basis temperature T, :glass transition temperature of the pofym
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where correlation parameters are set as a=0.2 ,b=7.0 and ¢=3.0
and U, is an overall heat transfer coefficient at no conver-
sion, x = 0. This correlation can be utilized if measurements
on the conversion of monomer are available, but which is not
practical due to the viscose character of the reacting medium
at a high conversion. It also depends on design details of the
cooling systems around a given reactor.

The entire model covering major behaviors of a polymeriza-
tion reactor will be used as a simulated process, while the
control synthesis and parameter estimation proceeds around
the design model.

111. Design of an optimal reference trajectory
The severe conditions caused mainly by the high viscosity of
the reacting mixture make it difficult to measure the physical
properties, related to the qualities of the produced polymer,
such as monomer conversion and MWD(Molecular Weight
Distribution), and subsequently make it difficult to control the
quality by the closed-loop feedback. Thus, the common ap-
proach for a quality control of the batch reactor is to determine

the reference operation trajectory leading to a polymer product
of the specified quality and then to design a controller for
implementing the trajectory precisely. Since at the terminal
time ¢=¢ T the product qualities are sensitive to the history of
the operation, i.e., deviations from the designed reference
trajectory during the whole reaction, the trajectory should be
tracked as tightly as possible.

Reactor Temperature{Dimensionless}

[4 1 2 3 a 5 §
Time(Hr)

Fig. 1. An optimal reference temperature trajectory for MMA
polymerization in a batch reactor.

The trajectory can be determined by minimizing the devia-
tions from the specified targets at a final time through search-
ing for the optimal temperature trajectory over the whole batch
time. The problem takes a mathematical formulation below;

—_ 2 a2
PDI Y MW, x 3)
+wy| 1 - == +ws| I ——
DI, MW Xy
1=t

J = Miniwl1-
A{gn n[ P

subject to
)’C :f(xaTa ‘9?t) x(t()) = xO (4)

where the objective function is expressed in the weighted-
deviation form of the number-averaged molecular weight
(Mw,), PDI(Polydispersity Index) defined as the ratio of the
weight-averaged MW to the number-averaged MW, and
monomer conversion from the respective desired value. Dy-
namic model as constraints consists of the material balances.

By the classical variational approach(Pontryagin Minimum
Principle), above optimization problem is reduced to the two-
point boundary value problem. That is, the process model
equations with initial conditions are integrated in forwards and
then the co-state equations with final conditions are integrated
in backwards, while the Hamiltonian is minimized by using
the steepest gradient method with a fixed searching size,
o, [18]. Fig.1 shows the calculated optimal reference tempera-
ture trajectory for the MMA polymerization. The bell-typed
shape is similar to the results in the literature[18][19].

In this work, the specified target values are x,=1.0,
PDI, =25 and MW, =360,000.(g/mol) and the weights in
the objective are set t0 w, =1.,w, =10.and w, = 20. The pa-
rameter, ¢, for updating the suboptimal trajectory at each
iteration is fixed to 1.0x 10,

IV. Input-output linearization of time-varying nonlin-
ear systems
The input-output linearization as a controller synthesis
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method has been well established for nonlinear time-invariant
systems[4][5] and recently extended to nonlinear time-varying
systems[20], both of which result in an equivalent linear time-
invariant system. The brief review will be given.

Consider a nonlinear time-varying system

%= f(x,0)+g(x,Hu (5)
y=h(x,1)

where xeT'cR”, ueR and yeR denote the state vector,
the input and the output, respectively. f and g are smooth
vector fields and % is a smooth scalar field, bothin I'xR.

The standard Lie derivatives for a time-invariant system are
inadequate for a time-varying system and need to be modified
to account for the explicit time dependence of the model. The
modified Lie derivatives are defined as follows;

LYh(x,0) = h(x,t)

s
Loh(e,ty=<dL'h, f > (1) +—L

k=12,. (6)
ot xh)

where dL’;:‘ 4 means the gradient of a scalar function, L’}" h
and <,> stands for the scalar product of two vectors.
Definition: For the system of eq.(5), the relative order of the
output y with respect to the input u is defined as the smallest
integer r such that

LoenL7nh(x,)#0  VxxteT x[1y,0) )

,i.e., bounded away from zero.

As in the time-invariant case, the relative order is the small-
est time derivative of the output which depends explicitly on
the input. The existence of a finite relative order ensures that
the locally invertible state transformation and state feedback
law linearizing the input-output response exist[20].

Through a suitable state transformation and state feedback,
the system can be transformed into the normal form[4], in
which structural characteristics of the system are clearly ex-
posed. Since we are interested in an output tracking problem,
the normal form in the error coordinates will be convenient for
controller design. The transformed normal form is

o=e
g, = Az, + By + Lo+ L L ) (®)

P ) -1
=7, (61 + e+ e, Y ),n,t)

where ¢, ={e,.,e, 7 With ¢ =Lifh -y, i=1,.1 is an error
coordinate vector and the pair(A,B) is in a controllable canoni-
cal form. 5 =(y,,.,n,.] is a new states vector and 3 _ < g""
is nonlinear maps. yih is the (i-1)th derivative of a reference
output and so it will be assumed that the reference output is
continuously differentiable as times as necessary. The normal
form above is augmented with an integral of the output error
and the linearizing state feedback is not yet applied.

The state feedback law linearizing the input-output relation
is clear from eq.(8);

") _gr
L L {’h(x,t) +v ©
L L7 h(x,t)

where a new control input, v is introduced to meet additional
control requirements around the linearized system and can be
taken as

v=Y (L7 o) = 5 ) + g [(hGs 1) — v )

i

= ia,-e, +ay _[)eldt' (10
=1

r
=

The coefficients, [«,,.,a, ]’ can be appropriately set for sta-
bility, performance and robustness due to the controllability of
a linear part in the error coordinates.

The nonlinear dynamics in the eq.(8) is unobservable from
the output and forms internal dynamics. It is called as zero
dynamics when the output is constrained identically to zero by
the suitable control input along with zero reference. The state
feedback closed-loop system with the control law of eq.(9)
and (10) is in a cascaded form, in which the linear system is
stable such that an arbitrary pole placement is possible and the
nonlinear system is driven by arbitrarily fast decaying errors
and bounded reference trajectory. Thus, the stability of above
closed-loop system is guaranteed only if the unobservable
system is bounded-input-to-state stable. This feature results
from the fact that the input-output linearization is a nonlinear
analog of the pole-zero cancellation in a linear system. There-
fore, for an internal stability, the cancelled dynamics are re-
quired to be stable. That is, the given system must be a mini-
mum-phase system[4].

Feedback linearizing controllers are based on the exact can-
cellations of the nonlinearities. Therefore, uncertainty in the
model would result in the control law that no longer linearizes
the input-output relationship. Imperfect linearization will
cause control performances to be affected or deteriorated. In
case of linearly parametric uncertainty, the estimates of
fand g can be obtained by using the estimated parameters
and then Lie derivatives can be calculated from these esti-
mates of the vector fields. For » > 2, the estimates of Lie
derivatives are not linear in the unknown parameters. This
difficulty can be avoided by redefining the multi-linear prod-
uct as another unknown parameter. Note that the derivatives of
the estimated parameters are also included as another parame-
ters in the control law.,

The approximate state feedback law using the estimated Lie
derivatives is

¥ = Loh(x,t)+ a7 (x0) - y6y + ag [ (R 1) = )i an
u = i=l

@ L Lr—]
oLy h(x,0)

where the bar represents the estimates of the corresponding
Lie derivatives. When 4 is applied to the system, the linear
error system of eq.(8) is no longer linear and becomes

Zt = A8 +W (&, 7,00 (12)

Here, 4, is a (r+1)X (r+1) Hurwitz matrix with the polynomial
coefficients, ¢, ,i=0,1,..,r and z ,, =[o,z,]7 .©@1is the parame-
ter error vector of all multilinear products among the parame-
ters and their derivatives such 67,.2 ,é,.é I ,éiéj ;. So, the sec-

ond term in the right-hand side is induced from uncertain pa-
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rameters and it is perturbing or destabilizing the stable linear
system. As each parameter estimate is reaching its true value,
the vector ©@ goes to zero and the error system is asymptoti-
cally linearized.

During the transient of the estimated parameters, the stabil-
ity of the perturbed linear system of eq.(12) is ensured when
the perturbation term, w(g,,5,1n)® are bounded and the poles
of the Hurwitz linear system are placed sufficiently deep into
the left half of s-plane and the internal dynamics are stable.

V. Parameter estimation

The design model of section II is described in only output
variables as states. The effects from the disturbance model are
treated as lumped time-varying parameters which should be
identified through some procedure. In this section, an estima-
tion method of the parameters in the design model will be
proposed.
Consider the nonlinear system linearly parameterized by the
time-varying parameters, g{r) € R”

P P
ol eoffoinnan

=0+ 0)+ 8 0] (13)
y=lyeyml

where Hy,u) is a known coefficient matrix of the unknown
parameters and ;7 e R?, g e R?, 1=0,1,...p are vector fields
on e RY. In addition to the controlled output, y,, the output
vector as the state vector, y is augmented with measurable
secondary outputs, y e R4 which are useful for parameter
estimations. The above equation can be considered as linear
parameterization of a general time-varying system of eq.(5)
with the help of independent secondary outputs.

The estimated outputs can be obtained from the same model
with the parameters replaced by their estimates as follows;

5= Hi}ff’(ﬁ)}+[§g;"(ﬁ)]u}é(t) o)+ g6l
i= i=1

—HGWA) G Gn] (14)

For parameters estimation, it will be assumed that a) parame-
ters to be identified appear explicitly in the design model and
that b) the coefficient matrix of parameters has a full column
rank. The nonlinear system of eq.(5) can be suitably arranged
in a parametric form such that unknown parameters appear in
the first derivative of the output vector as in eq.(14) and so
assumption a) is satisfied. After the rearrangements, the re-
sulted parameters often have their physical meanings in the
given process. As the relative order of the output, y_ for the
input, # is defined, the relative order, rl.gf of the out-
put, y, for a parameter, g, can be defined similarily as[21]

rig/ :m"{k(ﬁJ#O} Hie[l,..,p] (15)
26,

In the terminology of the parameter relative order, the assump-
tion a) means that all the parameters appearing in the design
model have the relative order of one. Similar to the input rela-

tive order of the controlled output, the parameter relative order
characterizes how directly the parameter affects the output.
The lower the relative order, the more direct is the effect of the
parameter on the output. In short, the proposed method can
estimate the parameters directly affecting one of the measur-
able outputs. Assumption b) is equivalent to the condition

rank{‘}’r‘{"(y,u)}= p (16)

As shown below, the assumption b) enables the unknown pa-
rameters to be computed directly from the parameterized sys-
tem model and it can be thought of as a sort of the regularity
condition for parameters observance from the first outputs
derivative.

The GMC(Generic Model Control)[22] as a nonlinear con-
trol design method is to find the control law that forces the
output response of the nonlinear system to follow the response
of a predetermined linear system, which is given as a PI con-
trol trajectory;

J=K(rg -2+ Ky [} (g, - p)t’ (7

If the system has the input relative order of one, the control
law by the GMC is directly obtained from the process model
as explicitly revealed in eq.(17). The method is directly ex-
tended to the square MIMO(Multi-Input Multi-Output) system
if each output has the relative order of one with respect to the
input vector.

When the GMC is adapted to the parameter estimation, it is
desired that the predicted outputs from the model of eq.(14)
converge the measured outputs along the specified P1 control
trajectory as a target trajectory;

F=K(y=)+ K[y - Dyt' (18)

where § is the predicted outputs. K,and K, are diagonal
matrices whose elements are chosen to achieve a proper pa-
rameter estimation performance as tuning parameters. Due to
the nonsingularity of the coefficient matrix, the parameter
estimation can be done by combining eq.(14) with (18) and the
resulted equation in a state space form is

F=K (-9 + Ky [y = Pydt’

a0-W koo kfo-a-Rorgon] (19

In this equation, the driving inputs are the measured outputs
The estimated parameters make the responses of the estimated
outputs and the outputs error to the measured outputs be a
second order linear dynamics as

e=(1s2 +K,s+1<2)‘21s2y (20)
9:(1#+1<‘s+1<2)’2(1(,s+1<2)y (21)

where ¢=p-—j is the estimation output error. By choosing
suitable K, and K, , the predicted outputs approach the meas-
ured outputs and the output errors decay to zero, both in the
prespecified 2nd order way. The design of the tuning parame-
ters follows the procedure suggested by Lee and Sullivan[22].
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When the predicted outputs approach the measured outputs, it
is desirable to suppress an overshoot and an oscillation of the
predicted outputs. Therefore, £ in the formula of Lee and
Sullivan[22] is advised to be greater than 3.0.

Table 4. Reaction Conditions for Simulation

Ve Solvent Volume 0.3(}H)

Vo Monomer Volume 1.0(1)

|44 Reaction Volume 1.3(1)

v, Jacket Volume 0.5%yp

T.. Coolant Temp. 10(TC)

A, Area for Heat Transfer 500( cm? )

c? Initiator Concentration 0.0258(gmol/1)
C Monomer Concentration 6.9675(gmol/1)
C? Solvent Concentration 2.1019(gmol/1)
U 0 Overall Heat Transfer Coeff. 0.75(cal/min.cn?® .K)
tr Batch Cycle Time 380(min)

where superscript © means the value at initial condition or at no con-

version.

An integral term in the PI target trajectory makes the pa-
rameter estimates approach their true values without any off-
sets if unknown external disturbances are not intervened. And,
in case of the existence of external disturbances, the estimates
incorporate the effects of the external disturbances on the out-
puts and so they deviate from their true values, but it improves
the robustness of the controller using the estimates.

The parameter estimation method by Tatiraju and So-
roush[23] is based on the model reference system of the first
order and so the responses of the estimated outputs to the
measured outputs are a first order. Their form does not contain
an integral term. The link between the parameter estimation in
this section and the GMC is through the fact that the relative
order of each parameter is one and the coefficient matrix is
nonsingular,

VI. Application to a polymerization batch reactor and
discussions

The input-output linearization method combined with pa-
rameter estimation is applied to a tracking problem of off-line
determined temperature trajectory of a polymerization batch
reactor. Application results via simulation will be discussed.
Simulation conditions are summarized in Table 4. In order to
prevent numerical conditioning problems, all the equations in
Table 2 are appropriately nondimensionalized. The bar over
the variables and parameters stands for the dimensionless of
the corresponding variables and parameters. The dimen-
sionless groups are omitted for brevity.
1. Design of the linearizing control law with an integral

In this application, the design model of the energy balances
from the equations set in Table 2 can be restated in the follow-
ing general form

X =61(x, X4, %0, X1, E) — 0, (3, ENXy — Xp2)

);CIZ =79_2 (fl’E)_F‘Cw(fD _iwuf)+qcx (22)

where §,(r)and 6,(r) represent the heat of polymerization

reaction and an overall heat transfer coefficient, respectively.
y is relatively constant and g, is the heat input from an ex-
ternal heater. Each parameter shows the dependence of the
states in the disturbance model and another parameters set, =.
It is assumed that each is completely unknown. They can be
treated as lumped parameters and have specific physical
meanings. For the design of the control, the design model will
be described in the state-space form of eq.(5)

X= F”} = f(}|1512,5(’))+g()?11”_‘12s§(t))’7c (23)
X2
;zh(ins;‘]z)=in
where
. 5()_‘1’}4,’_510311a5)—§2()_5h5)(}11‘5‘-12)}
=" =2
fx li }/92(X|,.Z)
_ . Jo
g(x,t)—H
Ec = _}_;Z'w()_cl 27 Z_l-w) + qex (24)

Based on the above model, the relative order, r of the output is
2 since LoLh =6,(%,5)# 0 and it is well defined over the
physical domain. Thus, the linearizing control law can be eas-
ily formulated according to the formula eq.(9)(10) and the
derivations of the necessary Lie derivatives are evident. Note
that the formula requires the first order derivatives of the un-
known parameters since 7 = 2 . But, as the magnitude of the
derivatives are relatively small for those of the original esti-
mates, actually applied control law may not necessarily in-
clude the derivatives of the estimates.

In the eq.(23), a combined input of eq.(24) as a control in-
put is used. But, either the coolant flowrate or the external heat
input has to be used for physical implementations. This prob-
lem is solved with ease through the coordination rules as fol-
lows[7][24];

if 7. <0, then Fo__ U, G, =0 (25)

<
ow —
Xy T,

if #,>0, then F -0, 7, =4, (26)

cw

The . is the output calculated from the controller. Of course,
each physical input may have upper and lower hard constraints
as in this work; o< 7, <1000.and g<y, <s External heat
input is required to heat up the initial reactor contents up to the
reaction temperature during the start-up and/or to recover the
reaction temperature after an excessive heat removal to the
desired temperature during the normal operation. Here, the
purpose of heat input is for the 2nd reason.

The polynomial coefficients of the controllable linear sys-
tem in the error coordinates of eq.(8) should be selected such
that the control requirements imposed on the given process be
satisfied. The control law of eq.(10) does not show explicitly
the existence of an external controller such as PI in the
GLC[5][6][7], but due to an integral term in the control law,
the coefficients can be chosen so that the resuited control law
be equivalent to that of the GLC control law with an external
PI controller. Therefore, the polynomial coefficients as the
tuning parameters will be set in the same way as the GLC
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suggests, which consists of two steps[7]. The tuning procedure
is systematic and easy to understand the effects and the roles
of tuning parameter on the performances at each step. At the
first step, the control law linearizing the nonlinear process into
an equivalent linear system of the order, r(relative order) are
designed. The determination of the dynamics of the linearized
linear system is usually referenced to the open-loop dynamics
of the nonlinear system generated by a step test. In this appli-
cation, when the reactor contains only monomer and solvent
and the reaction does not occur, the responses of the reactor
temperature to a stepwise coolant flowrate are used with a
suitable constant heat input applied. The characteristic equa-
tion of the linear system is made to be (& +1)" where ¢ is
about a time constant of the open-loop responses. The tuning
parameter, £ is not used to speed up or retard the resulted
linear dynamics. At the next step, an external PI controller is
designed based on the linear system according to the standard
tuning procedure of a linear system[25]. In this example, &
is set to 0.01 and 7, of an external PI controller is set to 2 &
and k, is found to be 1.0x 10° by a trial and error. After this
procedure is done, the coefficients of the control law of
€q.(10) are obtained by expanding the GLC control formula
and equating the respective coefficient of the same s-order.

For comparisons, a classical PI controller is also applied to
the tracking of the reference temperature trajectory and the
controller parameters of 7, =2¢ and K, =1.1x10* are
used. As the controller parameters imply, 7, is set from the
open-loop response and K, is found by a trial and error.
The tuning parameter found like this are used for all the simu-
lations without retuning for specific cases. The sampling time
for control and as well parameter estimation stated below is 5
sec and equivalently 2.2x 10 in the dimensionless time.
2. Design of GMC-like parameter estimation

The jacket temperature is not a controlled output, but useful
for the parameter estimation. The design model augmented
with the jacket-side temperature, X;, as a secondary output
can be expressed in the linearly parameterized form of eq.(13)
in terms of the time-varying parameters, §,() and 8,()

SR S
%) 10 Gy -3 6] [%2-T.] T (7
Y =[FerPml = [T, 521"

and individual functions in the eq.(13) are defined as

1 —(F, % 0
SN RO =) gg(i)=m

y(x1—x2)
_ 1 =Gnx) (28)
‘I‘(y,u)—{o 7(?_‘11—312)]

U, = —[_rcw('iIZ _Tcw) + qex

For an application of the proposed parameter estimation, the
above equation obviously satisfies the assumption a) and the
nonsingularity of the parameters coefficient matrix, ¥(3,u)
is also met unless the cooling jacket temperature is equalizing
to the temperature of the reactor. This situation may happen at
the period that after a sharp decrease of the temperature in the
trajectory is required, the heat input is applied to raise the

reactor temperature fast up to the desired point or in case of
noisy outputs when two temperatures are approaching closely.
To avoid the singularity and an abrupt peak of the estimates
when the matrix is close to the singular condition, the eigen-
values of the coefficient matrix as a distance measure to the
singularity are used for simplicity because one eigenvalue is
constant one and the other is y(%,, —¥,,), so allowing to use
the absolute value of the difference between two temperatures
as a distance measure to the singularity. The critical value for
the singularity is set to 1.0x 10™*and noise levels carried with
outputs are taken into account. When the absolute difference
between two temperatures is within the critical value, previ-
ously calculated estimates are used in the control law because
of the continuity of physical parameters.

The parameters estimates are computed such that the esti-
mated outputs follow the actual outputs in the 2nd order way
of eq.(21) and the output errors decay to zero in the same way
of eq.(20). But, because the linear relationship of the 2nd order
has a lead term, they are different from the usual 2nd order
linear model. If the tuning parameters matrices, K,and K,
are to be set as follows;

K, =diagdél e, 2/, | 29)
K, =diagll/ &}, 1162, } (30)

then, each transfer function of eq.(20)/(21) on the diagonal
becomes

2.2
&% 31)
gf,sz +2¢,8s5+1

sl (2)
ef,sz +2¢,8s+1

To avoid an overshoot and an oscillation, & is selected to be
5.0 as indicated by Lee and Sullivan[22]. In the GMC, £, is
chosen to give an appropriate timing of the response in rela-
tion to the known output response by the control input. Pa-
rameter £, is set to 0.01 for both outputs.

When the parameters estimation of the state space form of
€q.(19) is implemented, the first derivatives of the measured
outputs caused by the lead term in the numerator are required.
To obtain the approximate i-th derivatives, a standard differ-
entiator filter(lead-lag filter)

s' (33)

(€dS + 1),

where ¢, is a filter parameter(0< ¢, <<1), isused. As £, 0.
the output of the filter is more noisy and is a more accurate
representation of the derivatives. ¢, for both outputs is set to
1.0x 10™ in the dimensionless time. The size of ¢ , around
the order of magnitude of the sampling time or less than one
order of magnitude seems to be reasonable from the simula-
tion results for both noiseless and noisy outputs. The approxi-
mation through the differentiator filter is also used for getting
the derivatives of the reference trajectory needed in the control
law.
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In a tracking problem, a reference trajectory is fully available
and the controller is often trying to take priori actions to fol-
low the given trajectory. Because the parameter estimation
uses control inputs by the controller, priori control inputs to
catch up an anticipated and sharply changing trajectory may
make a big discrepancy in the estimates. To alleviate this, the
first-order dynamics of a filter type, accounting for dynamic
lags between the coolant flowrate and the jacket temperature
are introduced. Parameter estimation uses the filtered control
input through the filter. Filter parameter in the discrete form is
set to 0.2.
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Fig. 2. Block diagram of (a) an input-output linearization with
parameter estimation and (b) an input-output lineariza-
tion with a disturbance estimator.

Parameters are calculated by using approximated first de-
rivatives of the measured outputs and control inputs by the
controller. These features need a filter for the raw parameter
estimates and their filtered values through the filter are used in
the control law. The same filters with constants of 0.05 are
used for both parameter estimates.

3. An open-loop disturbance estimator and its use for
control

The disturbance model excluded in the control design can
be utilized as a feedforward disturbance estimator in an open-
loop mode, which is already stated at the previous section and
has been a common practice in the control of chemical proc-
esses[26]. Although a closed-loop disturbance estimator,
called as the state observer, such as EKF(Extended Kalman
Filter)[27] and other nonlinear observers[28][29] developed
lately, but not up to a desirable level, can be adopted to esti-
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Fig. 3. Comparisons of the control performances of an input-
output linearizations with exact parameters available,
an input-output linearization with estimated parame-
ters and PI control; (a) the tracking performances of
the reference trajectory; (b) the jacket temperatures
accompanied by each control; (c) the coolant flowrates
manipulated by each control.

mate the states involved in the parameters, its design is an
another challenging problem, especially for a polymerization
batch reactor, mainly caused by the coexistence of frequent
and infrequent measurements, convergence speed to true states
within a batch cycle time, dynamically varying characteristics
over a whole operation and so on[30]. Therefore, linearization
with the open-loop model as a simple estimator will be con-
sidered for comparisons with the adaptive input-output lineari-
zation. An open-loop observer like this is well accepted for
unavailable states in the control law such as GLC[5][61[7][8]
and NIMC(Nonlinear Internal Model Control){31]. The con-
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trol scheme of an input-output linearization with a disturbance
estimator, which is equivalent to the GLC, is shown in
Fig.2(b) along with that of the input-output linearization with
a parameter estimator of Fig.2(a).
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Fig. 4 Comparisons of the estimated parameters from the
parameter estimator with their actual values; (a) the
heat of polymerization reaction; (b) the overall heat
transfer coefficient.
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tive input-output linearization and an input-output
linearization with a disturbance estimator(case a).

Although many diverse realistic cases for a disturbance esti-
mator can be postulated, the following cases are considered to
be typical enough for illustrations.

Case a: initial loading(conditions) errors, particularly of the
initiator.

Case b: modeling errors such as the ignorance of the glass

effects at the high conversion and a simple linear dependence
of an overall heat transfer coefficient on the estimated mono-
mer conversion.

Case c: errors in kinetic parameters such as frequency factors
of the rate constants of the propagation reaction and the de-
composition reaction of the initiator.
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Fig. 6. Comparisons of the predicted parameters from the dis-
turbance estimator with actual parameters; (a) the heat
of polymerization reaction; (b) the overall heat trans-
fer coefficient (case a: +20% loading errors of initia-
tor).

Performances of the input-output linearization with a simple
model-based disturbances estimator can be varied significantly
case-by-case, depending on the extent of magnitude and speed
of its deviations from the actual process, but in contrast, a PI
controller and an input-output linearization with the parameter
estimation gives the unchanged performance except for
changes in the actual process.
4, Discussions on simulation results

Fig.3(a) shows the control performances of the exact input-
output linearization, the adaptive input-output lineraization
and a conventional PI controller. Fig.3(b) and (c) shows the
accompanying jacket temperatures and control input move-
ments of each control. When exact parameters are available,
an exact linearization in the input-output response is possible
and it can be played as a basis for comparisons. The control
performance of the exact linearization seems to be reasonable
because a good tracking of the reference trajectory resulted
and compared with the other two controls, the least control
movements are consumed.
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The performance of the input-output linearization with esti-
mated parameters will depend on the extent of the agreements
of the estimated parameters with true parameters. The esti-
mates by the proposed parameter estimation are shown in
Fig.4 along with their true values. As shown in Fig4, true
parameters are slowly varying before the gel effects, but when
the gel effects start to be prevailing, the changes of parameters
become significant in the speed and magnitude. The overall
heat transfer coefficient changes exponentially according to
the monomer conversion and faster at the on-set of the gel
effect because a sharp increase of monomer conversion takes
place. The heat of reaction also changes fast from the begin-
ning of the gel effects and shows even a peaking at the culmi-
nation of the gel effect. The peaking is partly caused by the
shape of the reference temperature trajectory. The increase of
the reaction temperature promotes the decomposition of the
initiator and subsequently the reaction rate of polymerization.
Increasing the temperature is to adjust and lower the averaged
molecular weight of the produced polymers to a specified
value. The estimates excellently agree with the true values for
both parameters during the gel effect in spite of the presence
of a peaking in the reaction heat. Therefore, as shown in Fig.3,
the control performances and input actions are comparable to
those of the exact linearization. Note that while big and steep
input changes are required to track the trajectory, the estimates
show smooth behaviors.
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Fig. 7. Comparisons of the predicted parameters from the dis-
turbance estimator with actual parameters; (a) the heat
of polymerization reaction; (b) the overall heat transfer
coefficient (case a: -20% loading errors of initiator).
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Fig. 9. Comparisons of the predicted parameters from the dis-
turbance estimator with actual parameters; (a) the heat
of polymerization reaction without glass effect; (b) the
overall heat transfer coefficient with linear conversion
dependence (case b).

As expected, a PI control gives the poorest performance and
the largest control input(Fig.3). At the end of batch time, big
fluctuations appear to be continuing.

Fig.5 shows the control performances of the linearization with
a disturbance mode! for case (a) of the subsection 3 and for
comparison, the control result of the adaptive linearization is
also plotted together. Usually, initial loadings of an initiator
are uncertain. The linearization with a disturbance estimator
incorrectly initialized gives worse control performances be-
cause inappropriate knowledges are utilized in the control and
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so the right control actions on time cannot be applied. This
fact can be confirmed from the predicted parameters via the
disturbance model in relation to the actual values.(Fig.6/7) In
case of +20% initiator loading error, the changes of the pre-
dicted values of the heat of reaction and an overall heat trans-
fer coefficient precede those of their respective actual values
far in advance as shown in Fig.6. So, early deviations occur at
the head of the rising reference temperature because a priori
control action of increasing the coolant flowrate is applied. In
case of -20% loading error, since the predicted parameters do
not reflect the magnitude of actual parameters (Fig.7), insuffi-
cient and out-of-time control inputs, solely depending on the
feedback of the reaction temperature, are applied and as a
result, very low reaction temperature is induced like the case
of the PI control.
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Fig. 10. Estimated parameters from the parameter estimator
with noisy output; (a) the heat of polymerization re-
action; (b) the overall heat transfer coefficient.

The results for case (b) are shown in Fig.8/9. The glass ef-
fects is exhibited at the higher monomer conversion than the
gel effects, of which the absence leads to the completeness of
the polymerization reaction and of which the effects on the
heat of reaction is shown in Fig.9(a). Due to the glass effects,
a complete monomer conversion is not possible in practice.
Effects on the heat transfer coefficient are very slight and not
shown. The result of a linear approximation to an actual over-
all heat transfer coefficient using the monomer conversion
from a disturbance model is shown in Fig.9(b). As in Fig.9(b),
the approximation is rough, but reasonable for the control use
only if no other errors in the model exist. The control per-

formances for case b are displayed in Fig.8 and the perform-
ances are a little poorer than those of an adaptive linearization.
In case there exist errors in kinetic parameters, particularly
such as the rate constants of the propagation reaction and ini-
tiator decomposition reaction, which are affecting directly the
monomer conversion and the heat of polymerization reaction,
the predicted behaviors of both parameters are similar to those
of the initial loadings error cases and so the control perform-
ances between two cases(a/c) are alike. Therefore, detailed
results for this case are not given.
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Fig. 11. Estimated parameters from the parameter estimator
with an external disturbance; (a) the heat of polym-
erization reaction; (b) the overall heat transfer coeffi-
cient.

Next, two issues, related with the performances of the adap-
tive linearization method, such as the effects of measurement
noise and the existence of unknown external disturbances on
the estimates, will be considered. Small noises are imposed on
two measured outputs; random noise with a standard deviation
of 0.01°K  for reaction temperature and random noise with a
standard deviation of 0.015 °K for jacket temperature, respec-
tively. Any filtering is not done for noisy outputs and all de-
sign parameters related with the parameter estimation are not
changed. The estimated parameters for noisy outputs are
shown in Fig.10. For the heat of reaction, although small fluc-
tuations exist until the gel effects start, the results are the same
as the noiseless case.(Fig.10(a)) But, for the heat transfer coef-
ficient, relatively large fluctuations appear before the gel ef-
fects.(Fig.10(b)) The fluctuations largely come from the fluc-
tuating control inputs because the control input is used in the
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parameter estimation and the control law is tightly tuned for
tracking the reference temperature of the bell-shaped, particu-
larly sharp downward part of the shape. In spite of relatively
large fluctuations, the control performances of the adaptive
linearization do not show noticeable deteriorations. (Not
shown)

When external disturbances affecting the outputs are intro-
duced, the estimated parameters based on the measured out-
puts will inevitably reflect the effects of these disturbances
into the estimates and so the estimates deviate from their ac-
tual values with a nonvanishing offset if the disturbances do
not vanish. The heat losses to the surrounding from the reactor
jacket are taken into account in the jacket-side energy balance
of eq.(27) as follows;

X = 105(%,5) - F Gy~ L) + G 0,5, -T,) (34

where g, is an overall heat transfer coefficient between the
reactor and the surroundings and 7 is the ambient constant
temperature. The heat loss is always negative. The estimated
parameters are shown in Fig.11. There is a noticeable devia-
tion in the overall heat transfer coefficient and a very slight
deviation in the heat of reaction. Because the estimates include
the existence of external disturbances and are directly used in
the control law, the performances of the adaptive linearization
do not change against the external disturbances.

VIL Conclusions

An input-output linearization method linked with parameter
estimation was proposed to control the system with time-
varying parametric uncertainties and applied to the tracking
problem of the optimal temperature trajectory of a polymeriza-
tion reaction in a batch reactor. The good performance of the
proposed method resulted from the good capability of the
parameter estimation method which showed good agreement
with fast varying parameters. Because uncertain time-varying
parameters can include the unknowns from several sources
such as disturbances, uncertain constant parameters and inac-
curate nonlinearities, in spite of the complexity of a polymeri-
zation reaction, the design model for controller synthesis is in
a simple form. And, since the estimates reflect theses uncer-
tainties, the robustness of the controller using the estimated
parameters can be improved. Simulation results showed that
the proposed method was effective and easy to implement.
And, the necessity of unavailable states in the control law and
the parameter estimation is eliminated, which is caused by the
form of the design model in only output variables.
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