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Abstract

In this paper, a robust and reliable H,, control problem
is considered for linear uncertain systems with time-varying
norm-bounded uncertainty in the state matrix, which per-
forms well despite of actuator outages. Using linear static
state feedback and the quadratic stabilization with H-
norm bound, a robust and reliable H,, controller is ob-
tained that stabilizes the plant and guarantees an H,-
norm bound constraint on disturbance attenuation for all
admissible uncertainties and normal state as well as faulty
state of actnators. It provides a sufficient condition for ro-
bust and reliable stabilization with H,-norm bound. Reli-
ability is guaranteed provided actuator outages only occur

within a prespecified subset of actuators.

1. Introduction

Robust state feedback control for linear systems
with parameter uncertainty has been increasingly studied
in recent years|2,4,5,10-13]. The resultant control systems
are robust and provide guaranteed stability and satisfacto-
ry performance for all admissible uncertainties. However,
they may result unsatisfactory performance and even un-
expected instability in case of actuator or sensor outages.
Since actuator or sensor outages can be occasionally found
in real world, they should be taken into account in practice
when a control system is designed. This paper develops ro-
bust and reliable control methodologies via state feedback

for uncertain systems with time-varying norm-bounded un-

certainty in the state matrix, which guarantees satisfactory
closed-loop behavior despite actuator outages.

Various robust control theories have been developed.
Especially, interests have focused on the problem of robust
H, control for linear systems with parameter uncertain-
ties. Most of results have utilized the Riccati equation
approach in view of the quadratic stabilization of uncer-
tain systems[2,4,5,13]. The objective is to design a con-
troller stabilizing an uncertain system while satisfying an
H,-norm bound constraint on disturbance attenuation for
all admissible uncertainties. For time-invariant linear un-

certain systems, robust H, controllers are constructed for

uncertainties in the input matrix[10] or for uncertainties
in the state matrix[11]. For linear uncertain systems with
time-varying norm-bounded parameter uncertainty in both
the state and input matrices, necessary and sufficient con-
ditions for quadratic stabilization with an H-norm bound
have been derived in [12].

Despite of often finding outages of control component
in practice, e.g. sensor outage, actuator outage, etc., only
a few reliable control methodologies have been developed
with various reliability goals. Reliable control laws using
multiple controllers for a single plant have been represented
in [1,3,6,7,9]. These approaches generally guarantee nor-
mal operation under failures in some of controllers. Very
recently, the methodology for the design of reliable cen-
tralized and decentralized control systems using observer-
based output feedback was introduced{8]. The resultant

control system is reliable in that they provide guaranteed
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stability and satisfy H.-norm bound constraint on distur-
bance attenuation not only when all control components
are operational, but also in case of sensor or actuator out-
ages in the centralized case, or in case of control channel
outages in the decentralized case within a prespecified sub-
set of control components. However, this controller is re-
stricted to known linear time-invariant systems.

In this paper, using the special result of robust H,
control in [12], which is robust Hy, control for the uncer-
tain linear system with parameter uncertainties in the state
matrix only, along with the philosophy of constructing reli-
able controller in [8], robust and reliable H,, control prob-
lem for the uncertain systems with parameter uncertainty
in the state matrix is solved not only in case of normal
operation, but also in case of actuator outages within a
prespecified subset of actuators. The result of this paper
is distinguished from that in [12], because actuator outage
type assumed in here cannot be treated as the uncertainties
of input matrix as in {12], and can be regarded as an exten-
sion for uncertain systems of centralized reliable control in
[8] using state feedback different from observer-based out-

put feedback.

2. System Specification and Def-
inition

Consider a class of uncertain linear systems described

by state-space models of the form Then, it follows that

()
2(1)

[A+ AA(L)] 5(t) + Biw(t) + Byu(t) (la)
Ciz(t) + Dyu(?) (1b)

where z(t) € R™ is the state, u(t) € R™ is the control in-
put, w(t) € R? is the disturbance input, z(t) € RP? is the
controlled output, A, By, By,C), and D, are real constant
matrices of appropriate dimensions describing the nominal
system, and A A(-) is real-valued matrix function represent-
ing time-varying parameter uncertainties. The parameler

uncertainties considered here are norm-bounded as

AA(t) = DF(t)E )

where D € R** and E, € R’™*" are known constant ma-
trices and F(¢) € R™ is an unknown matrix function
satisfying FT(t)F(t) < I with the elements of F(-) be-
ing Lebesgue measurable. Without loss of generality, we
shall make the following assumption for technical simplifi-
cation(12).

Assumption 1. DT [y, Dy] = [0,]]

Let us consider the following uncertain system with

parameter uncertainty AA.(t) in the state matrix:

z(t) [Ac + AA()]) z(t) + Bow(t) (3a)
(t) = Cez(t) (3b)

In this paper, design method for a linear state feedback
controller will be based on the quadratic stability with dis-
turbance attenuation of the closed-loop system(2,4,5,13).
In order to use the technique for quadratic stability, we
will first recall the following definition[12].

Definition 1. Given a scalar ¥ > 0, the system (3)

is said to be quadratically stable with disturbance attenua-
tion v if there exists a symmetric positive definite matrix

P such that for all admissible uncertainty AA.(-)

[Ac+ AA TP + PlA.+ AA(t))
+ 47*PB.BTP+CTC. < 0. (4)

Similarly, given a scalar 4 > 0, the uncertain system (1)
is said to be quadratically stabilizable with disturbance at-
tenuation v via linear state feedback if there exists a linear
state feedback control u(t) = Kz(t) such that the closed-
loop system is quadratically stable with disturbance atten-
uation 7.

Remark 1. Note that the quadratic stability with dis-
turbance attenuation v implies uniformly asymptotic sta-
bility for all admissible AA,(-) and that with zero-initial
condition for z(t), l}z[|2 < ¥[|w||; for all admissible AA.(-)
and all nonzero w € L;[0,00), where || - ||2 denotes the
usual L; [0, 00)-norm. .

We conclude this section by clarifying the terminology
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used in following sections. The terms of fault, outage, and
‘reliability used without describing words have the mean-
ings of actuator fault, actuator outage, and reliability for

actuator faults, respectively.

3. Main Results

In this section, Robust and reliable controller design
problem is solved to find a linear static state feedback con-
trol law u(t) = Kz(t) for the system (1) with parameter
uncertainty in the state matrix such that the closed-loop
system is quadratically stable with disturbance attenuation
~ for all admissible parameter uncertainties despite actua-
tor outages within a prespecified subset of actuators. It is
assumed that perfect information of the states of the plant
is available for feedback.

In case of an actuator outage, we can consider that
the control input value for a faulty actuator is zero, i.e.
the faulty actuator is excluded in control loop. We can
find this phenomenon in the digital equipments in practice
even if this doesn’t completely describe generally faulty
situations. Let 2 C {1,2,.-.,m} correspond to a select-
ed subset of actuators susceptible to outages. Introduce a

decomposition
B; = Bin + Bag (5)

where B,q and Baq are formed from B, by zeroing out
columns corresponding to susceptible actuator set  and to
actuator set except 2, respectively. Let w C §) correspond
to a particular subset of susceptible actuators that actually

experience outages. Again we can decompose B; for w

analogous to (5) as
Bz = Bzu + B?&- (6)

Since w C 1, it follows that Bgu,BZ;, < BmBzTn.
Theorem 1. For actuator outages corresponding to

any w C , the uncertain system (1) is quadratically stabi-

lizable with an H,-norm bound v > 0 if for a sufficiently

small 6 > 0, there exists a constant € > 0 such that a sym-

metric positive definite matrix Q > 0 satisfies the following

Riccati equation:

ATQ+QA + 77°QBiBIQ+eQDD™Q — QBB Q
+ %E‘,’El +CTCy +61=0. (1)

Moreover, a suitable feedback control law is given by
u(t) = Kz(t); K =-BjQ. ®)

Proof. The proof is accomplished to show that Theo-
rem 1 is true both when all actuators are operational, i.e.
w =0, and in case of actuator outages, i.e. w # @.

Suppose that there exists a constant ¢ > 0 such that
the Riccati equation (7) has a solution @ > 0.

First, consider that all actuators are operational. The
closed-loop system of (1) with the control law (8) is given

by the state-space equations

#(t) A (t)z(t) + Biw(t) (9a)
z2(t) = C.z(t) (9b)

where

A(t) = A+ DF(t)E, — B,BIQ
C. = Ci-DBIQ.

Then, it follows that

AI(Q + QAL(t) = ATQ+QA-2QB;:B]Q
+ ETFT(t)DTQ + QDF(1)E,. (10)

From the facts that

JeQD - %Efﬂ(t)] {«zDTQ U EL

and FT(t)F(t) < I, we have
ETFT()DTQ + QDF()E, < eQDDTQ + -l-ElTE.‘ (11)

By considering Assumption 1 and C, = C; + DK, we

obtain
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crec. =CTC, + KTK. (12)
Now, considering (9) and substituting (8) into (12), we

obtain

AT()Q + QAL(t) + v7*QB B Q + CC.
<ATQ+QA+~72QBBTQ +QDDTQ
1
—QBszTQ‘F:E]TEl +CyCy. (13)

Using (7), it follows that

AT()Q + QAL(t) + QBB Q + C]C.
< —6I — QByBL,Q < 0.

Hence, with all actuators operational, Theorem 1 is true
from Definition 1.

Next, consider for actuator outages corresponding to
w C Q with w # B. Due to actuator outages, B; and K
respectively correspond to By and K in the closed-loop
system. So, the closed-loop system is given by the state-

space equations

#(t) = Aa(t)z(t)+ Biw(t)
z2(t) = Cwz(t)

(14a)
(14b)

where

Axs(t) A+ DF()E, — ByyBLQ

Ce

¢, - DyBLQ.

Then, it follows that (10) and (12) become, respectively,

AT(NQ + QA.(t) = ATQ + QA - 2QB:: BLQ
+E{FT(1)DTQ + QDF()E,  (15)

and
CIc. =CTC, + KT K, (16)

where K; = —BLQ.
Using (15), (11), and (16), we obtain

AL()Q + QA +17°QBB{Q + CIC.

<ATQ+QA+77*QBB[Q+QDDTQ
1
-QBwBLQ +-E[E +CTC.. (17)

Finally, using (7) and the fact that Byq BX, < By; B, since
@20,

AT(1)Q + QA1) ++72QBBTQ + CTC.
<-6I- QBzo—nBzTo-—nQ <0

where B,;_g is formed from B, by zeroing out columns
corresponding @ — 0.

Hence, in case of actuator outages, Theorem 1 is also true
from Definition 1. vvv

Theorem 1 provides a sufficient condition for quadratic
stabilization with an H,,-norm bound + for uncertain sys-
tem (1) despite actuator outages. It includes the meaning
that if we allow all actuator outages, the system (1) must
be open-loop quadratically stable with disturbance atten-
uation 7. If a subset Q of actuators susceptible to outages
is empty set, It becomes a special result in case of only
considering parameter uncertainties in the state matrix in
(12). ‘

In the wide sense, actuator outages can be considered
to spe‘cial type of parameter uncertainties in the input ma-
trix because actuator outages assumed here is represented
to replacing column vectors of input matrix corresponding
the outages with zero vectors. But we can show that this
uncertainty is not described to parameter uncertainties in
the input matrix in [12]. Therefore we know that Theorem

1 is a new result that can not solved to the results in {12].

4. Example

Consider the following linear system with time-varying

uncertainty

. 0 1 1
(t) = [ ] z(t) + [ ] w(t)
—4 2+ cos(2t) -1
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a() = 2(t) + W)  (18)

—

-0 o o

o o o =
|

where the parameter uncertainty A A(t) can be represented

as follows:

AA()=DF()E, = [ cos(2t) ] [ 01 ] .

The nominal open-loop system is unstable, since all jt-
s poles are right half plane. If we let ¥ = 10, ¢ = 0.2
and § = 0.5, and assume §} = {2}, i.e. the actuator corre-

sponding to u; is susceptible to outage, then we obtain the

positive definite solution of (7) as follows:

33.0282 1.2827
Q= . (19)

1.2827 6.7372
With (19), we compose the controller under the control law
in (8). Fig. 1 shows the transient of the states, the con-
trolled outputs, and the control inputs of the system (18)
with initial state z(0) = [3,~2]7, when actuator outage
occurs at 5 second and the disturbance of w = 2 is input-
ed from 3 to 6 second. It shows that the control system

is robust and reliable for the parameter uncertainty and

actuator outage.

Time[scc]

Fig. 1a States for linear system in Example

(solid-line: z;, dashed-line: z;)
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Fig. 1b Controlled outputs for linear system in
Example (solid-line: z;, dashed-line: z,,

dotted-line: z3, dotdash-line: z4)

Timefsec)
Fig. 1c Control inputs for linear system in Example

(solid-line: u,, dashed-line: u,)

5. Conclusions

For linear systems with time-varying parameter un-
certainties in the state matrix, we has developed a state
feedback H,, control technique despite of actuator outages
within a prespecified subset of actuators. The scheme uti-
lizes linear static state feedback based on the quadratic sta-
bility with disturbance attenuation. The result has solved
the problem of robust H, control, quadratic stability, and

reliable control at one time.
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