• Title/Summary/Keyword: linear matrix inequality(LMI)

Search Result 351, Processing Time 0.025 seconds

Robust Guaranteed Cost Filtering for Uncertain Systems with Time-Varying Delay Via LMI Approach

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 2001
  • In this paper, we consider the guaranteed cost filtering design method for time-varying delay system with parameter uncertainties by LMI(Linear Matrix Inequality) approach. The objective is to design a stable guaranteed cost filter which minimizes the guaranteed cost fo the closed loop systems in filtering error dynamics. The sufficient conditions for the existence of filter, the guaranteed cost filter design method, and th guaranteed cost upper bound are proposed by LMI technique in terms of all finding variables. Finally, we give an example to check the validity of the proposed method.

  • PDF

Sliding Mode Observer for Fuzzy System: An LMI Approach (LMI를 이용한 퍼지 시스템의 슬라이딩 모드 관측기 설계)

  • Song Min-Kook;Joo Young-Hoon;Park Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.506-511
    • /
    • 2006
  • This paper considers a method to design sliding mode observers for a class of uncertain systems using Linear Matrix Inequalities(LMI). In an LMI-based sliding mode observer design method for a class of uncertain systems the switching surface is set to be the difference between the observer and system output. In terms of LMIs, a necessary and sufficient condition is derived for the existence of a sliding-mode observer guaranteeing a stable sliding motion on the switching surface. The gain matrices of the sliding-mode observer are characterized using the solution of the LMI existence condition. The results are illustrated by an example.

Robust control of linear systems under structured nonlinear time-varying perturbations I - Analysis

  • Bambang, Riyanto-T.;Shimemura, Etsujiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.81-87
    • /
    • 1993
  • In this paper robust stability conditions are obtained for linear dynamical systems under structured nonlinear time-varying perturbations, using absolute stability theory and the concept of dissipative systems. The conditions are expressed in terms of solutions to linear matrix inequality(LMI). Based on this result, a synthesis methodology is developed for robust feedback controllers with worst-case H$_{2}$ perforrmance via convex optimization and LMI formulation.

  • PDF

Structured Static Output Feedback Stabilization of Discrete Time Linear Systems (구조적인 제약이 있는 이산시간 선형시스템의 정적출력 되먹임 안정화 제어기 설계)

  • Lee, Joonhwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.233-236
    • /
    • 2015
  • In this paper, a nonlinear optimization problem is proposed to obtain a structured static output feedback controller for discrete time linear systems. The proposed optimization problem has LMI (Linear Matrix Inequality) constraints and a non-convex objective function. Using the conditional gradient method, we can obtain suboptimal solutions of the proposed optimization problem. Numerical examples show the effectives of the proposed approach.

Hyper-ellipsoidal clustering algorithm using Linear Matrix Inequality (선형행렬 부등식을 이용한 타원형 클러스터링 알고리즘)

  • Lee, Han-Sung;Park, Joo-Young;Park, Dai-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.300-305
    • /
    • 2002
  • In this paper, we use the modified gaussian kernel function as clustering distance measure and recast the given hyper-ellipsoidal clustering problem as the optimization problem that minimizes the volume of hyper-ellipsoidal clusters, respectively and solve this using EVP (eigen value problem) that is one of the LMI (linear matrix inequality) techniques.

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input - Application (제어입력 크기제한을 갖는 시스템에서 이득 스케줄 상태되먹임-외란앞먹임 제어 - 적용)

  • Kang, Min-Sig;Yoon, Woo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.65-73
    • /
    • 2007
  • In this paper, the gain scheduled state feedback and disturbance feedforward control design proposed in the previous paper has been applied to a simple matching system and a turret stabilization system. In such systems, it is needed to attenuate disturbance response effectively as long as control input satisfies the given constraint on its magnitude. The scheduled control gains are derived in the framework of linear matrix inequality(LMI) optimization by means of the MatLab toolbox. Its effectiveness is verified along with the simulation results compared with the conventional optimum constant gain control and the scheduled state feedback control cases.

Fuzzy Output-Feedback Controller Design for PEMFC: Discrete-time Nonlinear Interconnected Systems with Common Inputs Approach (고분자 전해질 연료전지 시스템의 퍼지 출력 궤환 제어기 설계: 공통 입력을 갖는 이산시간 비선형 상호결합 시스템 접근)

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.851-856
    • /
    • 2011
  • In this paper, the fuzzy output-feedback controller is addressed for a discrete-time nonlinear interconnected systems with common input. The nonlinear interconnected system is represented by a T-S (Takagi-Sugeno) fuzzy model. Based on T-S fuzzy interconnected system, the fuzzy output-feedback controller is designed with common input. The stability condition of the closed-loop system is represented to the LMI (Linear Matrix Inequality) form. PEMFC model is given to show the verification of the controller discussed throughout the paper.

A Linear Matrix Inequality Optima Control for the Tracking of an Autonomous Gliding Vehicle (자동 미끄럼 이동 로봇의 경로 추종을 위한 LMI 최적 제어 기법)

  • 이진우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.335-335
    • /
    • 2000
  • Applications such as unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs) and the time varying nature of their navigation, guidance and control systems motivate an integrated approach to trajectory general ion and trajectory tracking for autonomous vehicles. In this paper, an experimental testbed was designed for studying this integrated trajectory control approach. In this paper we apply the separating approach to an autonomous nonlinear vehicle system. A new linear matrix inequality based H$_{\infty}$ control technique for periodic time-varying systems is applied to the role of trajectory tracking. Trajectory general ion is accomplished by exploit ing the differential flatness property of the vehicle system; this at lows product ion of desired feasible nominal or reference trajectories from certain ″flat'system outputs. Simulation and experimental results are presented showing stable tracking of a periodic circular trajectory.

  • PDF

Discrete-Time Output Feedback Algorithm for State Consensus of Multi-Agent Systems (다 개체 시스템의 상태 일치를 위한 이산 시간 출력 궤환 협조 제어 알고리즘)

  • Kim, Jae-Yong;Lee, Jin-Young;Kim, Jung-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.625-631
    • /
    • 2011
  • This paper presents a discrete-time output feedback consensus algorithm for Multi-Agent Systems (MAS). Under the assumption that an agent is aware of the relative state information about its neighbors, a state feedback consensus algorithm is designed based on Linear Matrix Inequality (LMI) method. In general, however, it is possible to obtain its relative output information rather than the relative state information. To reconcile this problem, an Unknown Input Observer (UIO) is employed in this paper. To this end, first it is shown that the relative state information can be estimated using the UIO and the measured relative output information. Then a certainty-equivalence type output feedback consensus algorithm is proposed by combining the LMI-based state feedback consensus algorithm with the UIO. Finally, simulation results are given to illustrate that the proposed method successfully achieves the state consensus.

New Sufficient Conditions to Intelligent Digital Redesign for the Improvement of State-Matching Performance (상태-정합 성능 향상을 위한 지능형 디지털 재설계에 관한 새로운 충분조건들)

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.293-296
    • /
    • 2006
  • This paper presents new sufficient conditions to an intelligent digital redesign (IDR). The purpose of the IDR is to effectively convert an existing continuous-time fuzzy controller to an equivalent sampled-data fuzzy controller in the sense of the state-matching. The state-matching error between the closed-loop trajectories is carefully analyzed using the integral quadratic functional approach. The problem of designing the sampled-data fuzzy controller to minimize the state-matching error as well as to guarantee the stability is formulated and solved as the convex optimization problem with linear matrix inequality (LMI) constraints.

  • PDF