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Robust Guaranteed Cost Filtering for Uncertain Systéms
with Time-Varying Delay Via LMI Approach

Jong Hae Kim

Abstract: In this paper, we consider the guaranteed cost filtering design method for time-varying delay systems with parameter
uncertainties by LMI(Linear Matrix Inequality) approach. The objective is to design a stable guaranteed cost filter which minimizes
the guaranteed cost of the closed loop system in filtering error dynamics. The sufficient conditions for the existence of filter,
the guaranteed cost filter design method, and the guaranteed cost upper bound are proposed by LMI technique in terms of all
finding variables. Finally, we give an example to check the validity of the proposed method.
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1. Introduction

Since the filtering design that can handle model
uncertainties has been one of the interesting problems, much
effort[1]-[4] has been devoted to the development of
filtering design method. Petersen and McFarlane[l]
presented the results on the design of robust state feedback
controllers and steady-state robust state estimator for a class
of uncertain linear systems with norm bounded uncertainty.
Wang and Unbehauen{[2] considered the observer design
problem for uncertain linear systems with D-stability
constraints. Xie and Soh[3] studied the problem of Kalman
filter design for uncertain systems using Riccati equation
approach. Also, Xie et al.[4] treated the problem of He
estimation for discrete time linear uncertain systems.
However, they just considered parameter uncertain systems
without time delay using Riccati equation technique. Also,
the extensive use of optimization criteria like the A, and/or
He norm has consolidated the importance of estimation and
filtering in linear systems theory[S]-[8]. Geromel et al.[5][6]
dealt with H, and He robust filtering for discrete time
systems and convex bounded uncertain systems by LMI
techniques. Also, Palhares et al.[7][8] considered the
problem of mixed L,-Lo/H filtering for uncertain systems
and robust He filtering design with pole constraints for
discrete time systems using LMI approach.

Recently, many works treated time delay systems in
control part because the time delay is frequently a source of
instability and encountered in various engineering systems.
However, most of filtering works did not consider time
delay in parameter uncertain systems. Recently, Yu et al.[9]
proposed guaranteed cost control methods for uncertain
systems with time delay. More recently, Kim[10] treated the
problem of designing guaranteed cost state feedback
controller for the generalized time-varying delay systems
with delayed state and control input by LMI approach.
However, there are no papers considering both time delay
and parameter uncertainty to guarantee the upper bound of
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cost function in filtering design problems. And, most of
works considering guaranteed cost filtering problem without
time delay were somewhat conservative because some
variables should be determined before finding solutions
from Algebraic Riccati equations. Also, we want to develop
the guaranteed cost filtering design algorithms as a dual part
of guaranteed cost control design method[10]. However, the
proposed result is not derived directly from the work[10].

Therefore, we propose the guaranteed cost filtering design
method for parameter uncertain time delay systems without
any pre-selections of variables by LMI technique. Moreover,
we present an optimization problem to get the optimal
guaranteed cost filter and the upper bound of guaranteed
cost.

II. Guaranteed cost filtering design
Consider a linear time-varying delay system

2(8) = (A+JAW))x(8) +( A+ A Lt)x(t— d(t))
W) = (CHAC(t)x(t)
() = ¢(¢), —d0) =t=<0

where x(#)eR” is the state vector, ¥(#)=R" is the
measurement output vector, ¢,(¢) is an initial value

function, and all matrices have proper dimensions. Here,
time-varying delay is satisfied with

0<d(t)<oo, dt)<y<l, (@)

and time-varying delay is the known state delay. The
parameter uncertainties are defined as

2 -lres o

AAd(t) = Hsz(t)Ed.
Here, unknown matrix is defined as

Fi(t)e @:={F,(t): F()TF()< 1(i=1,2), @
the elements of F;(¢) are Lebesgue measurable }.

We assume that the system (1) is asymptotically stable. This
assumption guarantees that the boundedness of the filtering
error holds, since the asymptotic stability of the filtering
error dynamics depends on the states of the system (1). Our
aim is to design a stable linear guaranteed cost filter
described by
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(1) = Gx(t)+ A x(t—d(2)) + Ky() (%)

where, G and K are filter variables. If we take the error
state vector as follows:

e(t): = x(£)—x(¢), 6)

then the error dynamics is obtained
e(t) = Ge(t) +(A—KC— Gx(t)+ Aze(t—d(D)
(4A(H) — KAC())x(B) + dA L 8)x(t—d(8)) (7)
2(t) = Le(t)

=+ 1

by defining the error state output as z(f)= Le(t). If we
define the following augmented state vector

o[

then the filtering error dynamics is given by

xf(t) = (A/+H/F1(t)E/)x_/(t)
+_(Adf+ HyFy(DE;)x,(t—d(t))

= A/Xf(t)"}' dexf(t— d(t)) (9)
2(t) = Cut)
x(t) = ¢t) = g;gg . —d(0) =<0,

where some notations are denoted by
- A 0 _[A: O _
As [A—KC-G G]’Adf [o A,,]’Cf (o Z1,
= H, =[H] g = =
H=[ g, i) Ho= [ 5] Br=LE 01 Ey= [ E, 01,
(10)
and ¢,(¢) is an initial error value function. Here, we

introduce guaranteed cost

J= fomz( O« p)dt. a1

Therefore, our objective is to develop the stable guaranteed
cost filtering design method satisfying the minimization of
guaranteed cost (11). In the following, we present an LMI
optimization problem to get the optimal guaranteed cost
filter and the upper bound of guaranteed cost bound.
Theorem 1: If the following optimization problem

minimize {a+ #(g)} subject to (12)
Xx @ 0
* kx —(1=9Si+BEIE,
* ok *
* ok *
* ok * (13)
PQAG’ PZH] _MZHZ Psz
—(1-7S; 0 0 ’
% — Bl 0
* * _ﬁzl
— a+ $,(0) "P16,(0) + $5(0) T Py2(0)<0, (14)

— Q+ N{S\N, + Ni SoN, + NFSoNy+ NISaN,<0 (15)

has a solution positive definite matrices(or scalar) P;, P,,
S1, S, Ss @, @, B, B and matrices M;, M,, then (5)

is a guaranteed cost filter and J"=a+ #(Q) is an upper
bound of guaranteed cost. Here, * represents the elements
below the main diagonal of a symmetric matrix, #{ )
denotes the trace of a matrix, and some notations are
defined as

U,=ATP +PA+S,+H/ETE

U,=A"P,— CTMI— MT+ S,

=M+ M+L7L+S,

M,=P,G (16)
M2=P2K

g=-L, i=1,2

&;

0
f_d(o)qif(r)qﬁf(r)Ta’r:MVT:[%;][Nf N

Proof: If we take a Lyapunov functional

W (¢)) = x,() TPx(t) + ftt_dmxf( ) 'Sxc)dr,  (17)

then the derivative of (17) is given by

Jéf(t)TPx/(t)+xf(t)TPaéf(t)
+x,(8)TSx,(2)

—(1— d(t Nt~ d(t)) "Sx,(t— d(t))

= pé/(t)TPxf(t)+x/(t)TPx'/(t) (18)
+X/(f) TSx/(t)

— (1= Px(t— 1)) TSx(t— d(t))
i= Val(xp(8)).

V(xs (1))

I

The linear matrix inequality (13) implies that
Vx ()< V(e (8))<—2(2) "2(£)<0. (19)

Therefore we have

(e B B | i O O

where, S= A, P+ P A+ CFC/+S. And (20) is changed to

x(t) 1770, PA x,(£)
Lo laen] [% 07 a0 @)

by the following lemma

2x,(t) TPH,F\(£)Ex A t)
<ewx,(t)TPH,HIPx/(t) +%le(f)TEfTEfxf(l‘),
22/(t) TPH  Fo(t)E gy [ t— d(t)) (22)
<epw,(t)TPH  HLPx (1)
+6i2xf<t— (1)) ELE yx (t— d(1)).

Here,
0, = AJP+PA+CICH+S
+ e PHHIP+ ei ETE + e,PH HTP,
1
0, = —(1—9NS+1/e)ELE,,

and ¢;,7=1,2, is a positive constant. By Schur

complements, the matrix inequality
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o PAdf <0 23)
* _(1_7)S+ Ed/Ed/

is equivalent to

() PAd/ PH;, PHy
* _(1_?’)5"' Ededf 0 0 <0, (24)
_1
* * S1 0
* * x -7
=]

where, @=AJP+PA,+C]C/ S+ - EJE,. And if we

set

_[P O
P=[0p) 25)
=[S S
S [52 Ss]’

then (24) is transformed into

A A PA,
X Aj 0
X ok —(1-98+ Ea’Ed
* ok *
* ok *
* X * (26)
0 PlHl PlHd
PzAd P2H1_‘P2KH2 Psz
—(1—7)52 0 0 <0
—(1-7S; 0 0 ’
1
% s I 0
* * Ly
&9 |
where,

M=ATP+PA+S+LETE,

Ay =ATP,—C'K'P,— G"Py+ Sy,
A3=G'"Py+P,G+L'L+S;.

Using some changes of variables, M,= P,G, M.= P;K,

and L = =p4; i=1,2, (26) is transformed into (13).

Furthermore, by the integrating both sides of the inequality
(19) from ( to 7, and using the initial condition, we
obtain

Ty
= |, DD 5 (T Pr (T — 2, (0)T Pay(0)

T, 0
+ x,(z) TSx (v )dr— f—d(())

Ty d(0) x/(0) Sk (1 )dr.

@7

As the closed loop system is asymptotically stable, when
Ty—co, some terms go to zero. Hence we get

[ 2 Ta0ar 28
T 0 T
<0 PoAO+ [ b0 S (1),

This is an upper bound of guaranteed cost. The first term

of right hand side in (28) is changed to

- a+ ¢.0) r
Pg0)<0.

This is equivalent to (14). The second term of right hand
side in (28) has the following relations

fd<o>¢f(T)TS¢f(T)dT~ fi)d(o)tr(¢f(T)TS¢f(f))dT 29)
= t{NNTS) = tr{ N"SN) <t/ Q).

Therefore, — @+ NTSN<Q is equal to (15). ]
Hence, we can get the optimal guaranteed cost filter.

Also, all solutions including filter variables( G= P; M,
K=P;'M,) and the upper bound of guaranteed cost

(I'=a+t1{@Q) can be calculated simultaneously because
the proposed sufficient conditions are LMIs in terms of all
finding variables.

Remark 1: The optimization problem in Theorem 1 can
be solvable easily using the command of ‘mincx’ in LMI
Toolbox[11], which is numerically efficient owing to recent
advances in convex optimization. Therefore, all solutions
(Pl, Pg, 51, Sz, Sg’ a, @, Bla BZ: Ml’ and MZ) can
be obtained at the same time.

Remark 2: The proposed guaranteed cost filter design
algorithm can be extended into various guaranteed cost filter
problems including continuous and discrete time systems
such as multiple time delay systems, convex bounded
uncertain systems, interconnected systems, and so on.
Moreover, the presented guaranteed cost filter design
algorithm includes the design method for the parameter
uncertain systems without time delay.

I11. Numerical example
In order to check the validity of the proposed filter design
algorithm, we consider a parameter uncertain system with
time-varying delay

1) = | 7 _02]+[0-1]F1<t)[1 1}x(1)
-0.1 0 0.1 _
([ _8 J[eon nj-an
¥t) = {[10]1+0.1F ()1 11}x(s)
28 =11 11eld)
d(t) = 2+0.2sint, ¢.¢) = [T 00.1 117

(30)

All solutions are obtained simultaneously using LMI control
Toolbox[11] as follows:

P, [0.0193 0.0082] P =[0.3417 0.4603]
o oqme) C L0460 0.8 s
_TJ0. .014 _1n-3 . —0.
Si [0(.)0(1)1%:%10.01&'63]0'4 7‘292 L P
S3=[—6.0472 0.3014 ] =0.1460,

0.0001 0 0 0
o=| 0 0.0506 —0.0000 0

0 —0.0000 0.0001 0 |

01 0422 0 0.9251 0 0'01001{520
Ml:[ 0.9055 —1'3110] M2=[1:1358]’
£=0.0032, 8,=0.0105.

(E3))
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Therefore, the guaranteed cost filter and the upper bound of
guaranteed cost are

o [ —19.0243 —0.6358] -
(t) 118565 51.5376]"(’)
01 o 16.7099
00— e Ao+ I ],

J = 0.1557.

(32)

Moreover, the obtained filter guarantees an optimal
guaranteed cost. For computer simulation, unknown matrices
are defined by

Fi(1)
Fy(t)

|

sin Z, 33
cost. (33)
The trajectories of error states and error state output are
shown in Fig. 1. Therefore, the obtained filter guarantees
not only asymptotic stability of filtering error dynamics but
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Fig. 1. The trajectories of error state and error state output.

also minimization of upper bound in guaranteed cost
function against parameter uncertainties and time-varying
delay.

V. Conclusion

In this paper, we proposed the guaranteed cost filter
design algorithm for time delay systems with parameter
uncertainties. The sufficient conditions for the existence of
filter and guaranteed cost filter design method were
presented using LMI technique. Since the proposed
conditions were LMI forms in terms of all finding variables,
all solutions could be calculated at the same time. Also, we
checked the validity of the proposed method by an example.
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