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Abstract

In this paper robust stability conditions are obtained for linear
dynamical systems under structured nonlinear time-varying per-
turbations, using absolute stability theory and the concept of
dissipative systems. The conditicns are expressed in terins of
solutions to linear matrix inequality(LMI). Based on this result,
a synthesis methodology is developed for robust feedback con-
trollers with worst-case H, performance via convex optimization
and LMI formulation.

1 Introduction

In the analysis and synthesis of feedback control systems, it is
important not only to determine the stability and performance
properties of the nominal closed-loop system, but also to guaran-
tee that such properties are achieved for an entire set of neighbor-
ing plants that arise from inevitable presence of modeling errors
and plant uncertainties [29]. Thus, robust stability and perfor-
mance has attracted considerable interest, and depending on how
the set of plant perturbations are deﬁned, various results have
been proposed to check such properties. Much research in robust
analysis has been conducted for problems with respect to norin
bounded perturbation which are either unstructured or struc-
tured and modeled as otherwise unknown transfer functions. In
particular, M, theory has been recognized as an imporiant tool
for guaranteeing robust stability with respect to unstructured
uncertainties. However, Hoo design may lead to conservatism
when uncertainty is known to be structured. Structured singn-
lar value(y:) analysis developed by Doyle is frequently applied to
reduce significantly the conservatism {10, 11,12, 29].

Recently, robust analysis and synthesis tools that are less con-
servative for real parameter unceriainties, are developed by Sa-
fonov [12, 13] using absolute stability theory and by How {7, 8, 15]
using the combination of absolute stability theory and the con-
cepts of dissipative dynamical systems. The stability condi-
tion in [7, 8, 15] is established for system under nonlinear un-
certainty model with linear uncertainty as special case of this
much broader class, and is formulated in state space in terms of
Riccati and Lyapunov equations, whereas robust stability condi-
tion in [12, 13} involves complex diagonal multipliers acting on a.
positive-real, bilinearly-transformed system. The corresponding
frequency domain stability test in [7, 8, 15] gives an interesting
connection to an upperbound of g with mixed real and com-
plex linear time-invariant perturbations [32]. The analysis tool
developed in I?, 8, 15], however, is restricted to structured time-
invariant nonlinear perturbations.

In this paper, robust stability conditions are developed for
structured nonlinear time-varying perturbations. This paper
heavily relies on the recent results reported in {7, 8, 15]. It is
found that stability conditions established in [7, 8, 15] is a spe-
cial case of those developed in this paper. Furthermore, our
result goes beyond those of [7, 8, 15] by considering nonmono-
tonic nonlinear uncertainty with improved stability condition and
nonlinearity with saturation. Instead of employing Riccati equa-
tions as done in [7, 8, 15], the robust stability conditions derived
in this paper will be stated in terms of LMI, which is in our
opinion more natural and could provide a valuable alternative to
analysis and synthesis of robust control [27, 7, 29, 30, 31, 3G, 37).

Our paper also differs from [7, 8, 15] in that convex optimiza-
tion and LMI approaches are used in the synthesis of feedback
control with robust 7{, performance under structured nonlinear
time-varying perturbations, extending the previous result of ours
on mixed 7{2/7100 robust control design {27]. A closcly related
analysis problem is considered recently by Rantzer [38] in the
frequency domain.

Notation used in this paper is fairly standard. For a given
matrix A, A’ and tr(A) denotes its transpose and trace, re-
spectively. If 4 and B are hermitian matrices, A > B (resp.
A > B) denotes A — B positive definite(resp., definite). The
Hardy space Ha(resp., Hoo) consists of matrix-valued functions
that are square integrable(essentially bounded) on the imaginary
axis with analytic continuation into the right-half plane. ’lhe H,
and Hoo norms are defined as

6@l = (50 [ 16" ()G Gw)lde}
IG(Heo i= 5P omar (G5}
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- (4141

denote a state space realization of a transfer function G(s) =
C(sl — A)"'B + D. A square transfer function G(s) is said to
be positive real if: {1) All poles of G(s) in the closed left half
plane, and (2) G(s) + G*(s) > 0 for Re si > 0. A square transfer
function G(s? is said to be strictly positive real if: (1) G(s) is
asymptotically stable (2) G(jw) + G‘(ju} > 0 for all real w.
A square transfer function G/(s) is strongly positive real if it is
strictly positive real and D + D' > 0 where D = G(oo). A
minimal realization of a positive real transfer function is known
to be stable in the sense of Lyapunov, and a strictly positive real
transfer function is asymptotically stable.

2 Formulation of Robust Stability Prob-
lem

We consider robust control analysis problem with setup shown in
Figure 1. In this figure A = diag(A;,A,,...,A,,) consists of m

A

G(s)

Figure 1: Robust control analysis framework

diagonal memoryless nonlinear time-varying (NLT'V) elements,
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while G(s) is an LTI feedback interconnection matrix with state
space representation G(s) ~ { Ao By ] It is well known that

nonlinear elements arising at different locations in the feedback
loop can be put in this framework {29].

Robust stability problem considered in this paper is to de-
termine conditions for stability of the feedback interconnéction
shown in Figure 1 for all time-varying memoriless nonlincarities
A; within certain classes defined precisely in the sequel. The
nonlinearities of interest in this paper are real, continous, single-
valued scalar functions, and are denoted hy f;(.,f). We will im-
pose restriction on the rate of time-variation of the nonlinearities.
In general this can be described in several ways. In this paper,
we use

/" luY) 4o < i filint), Vi, €20 (2.1)
0 ot

We shall consider several classes of nonlinearities as follows:

1. Time-Varying Monotonic Nonlinearities.
This class of nonlinearities satisfies the following rclations

£i(0,6)=0, Vi >0,Vi (2.2)
my < 4dbe) « my;, Yo,vt > 0,Vi (2.3)

where my; and m,; represents upper and lower bound on the
slope restrictions(see Figure 2). Such a class of nonlinearities
will be denoted by N,,.

2. Time-Varying Odd Monotonic Nonlinearities.
In addition to (2.1)- (2.3), this class of nonlinearities also
satisfies

f"(-—U,t) = ——f,’((f,t), vt > 0,Vi (24)

Such a class of nonlinearities will be denoted by M.

3. Time-Varying Odd Monotonic Nonlinearities with

Saturations.
In addition to (2.1)-(2.4), this class of nonlinearities also
satisfies
d2 i U,t .
a——%——l <0, Vo,vt > 0,Vi (2.5)

It is shown in [21, 25}, that such nonlincarities satisfy

i1 fi(or,t) + [1 = iloz fi(o2, 1) £ [02 fi(o1)

—01fi(a2,1)] 2 0, Yo1,02,V,0 <8 < 1,Vi (2.6)

Such a class of nonlinearities will be denoted by M,,,,.

4. Time-Varying Nonmonotone Nonlinearities.
In addition to (2.1) and (2.2), the functions fi(o,t) are as-
sumed to satisfy

(o1 ~ 02)[filos,t) = fi(o2,1)] = —(Ai = D)o fi{o1,0)
+ogfi(oz, )], Voi,09,V8,VA > 1, Vi (2.7)

These functions reduce to monotonic nonlinecarities if A; = 1
[20]. Such a class of nonlinearities will be denoted by V..

The reason for considering more restricted classes of nonlia-
earities, e.g. the classes A,, and M,,, compared to the class
N, is that we would like to reduce the conservatism of the ro-
bust stability test by enlarging the class of the multipliers. Thus,
for a more restricted class of nonlinearity, the condition imposed
on the LTI system is expected to be loosened. In some cases,
however, one should be able to handle a more general class of
nonlinearities. This is the reason why the general class of time-
varying nonmonotone nonlinearities, i.e. the class M, is also
addressed in this paper.

f.'(U.',l

Nui

ny

O

Figure 2: Nonlinearities with bounded sector [y, mp,).

3 Dissipative Dynamical Systems
Let us consider a dynamic system I of the form

(1) = Az(t) + Bu(t)
w(t) = f(2(1),1) + Du(t)

where u(t) € ®™,u(t) € R, and z(t) € R*. Along with the
dynamical system Y, suppose that there is given a function V :
R x Rt = R, called storage function, and a function W : ® x
™ x Rt o R, called the supply rate. Assume that for any u(.)
and z(.)

(3.1)
(32)

t
/' IW()ldt < 0o for all to,t, > 0,
to

i.e. W is locally integrable.
Definition 3.1 (Willems(2, 5]) The triple {£,W,V} defines u

dissipative dynarmical system if
1. V{(z,t) > 0 for all t > 0 and for all z(.) satisfying (3.1),
2. the following dissipation inequality (DI) is satisfied,

V(z(t1),t1) — V(z(lo) to) < /‘t‘ W(y(t),u(t), t)dt, (3.3)

Jor all to, 1, and for all z(.), u(.), and y(.) satisfying (3.1)
and (3.2).

When V(z(t),t) is differentiable, then DI reduces to

V(z(t),1) € W(y(), u(t),1),

with V(x(t),t) a total derivative of V(z(1),1) along the state tra-
jectory x(t).

t>0 (3.4)

As shown in (2, 3, 4, 5], an appropriate supply rate for lesting
passivity of a system y = G(s)u is W(y,u) = v'y, while for small
gain theorem is W(y, 1) = v'u — v~ ?y'y, for the latter results in
G (sHloe < 7-

The concepts of supply rate and storage function are very use-
ful in checking the stability of interconnected systems. If, for
each subsystem it can be found that there exists a storage func-
tion which is dissipative with respect to an appropriate supply
rate, then these functions can be combined to form a Lyapunov
function for the interconnected systems. lLet us illustrate this
concept via a special case of interconnected systems that is rele-
vant in robust stability problem stated in previous section. Let
£, and I, be two dynamical systems interconnected as in Fig-
ure 3. Suppose vy = vy = 0. Let ¥y be the resulting in-
terconnected system. Let 2; and x2 be the states associated
with Iy and E, respectively and assume that {£,,V;, W} and
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Y32, Va, W} are both dissipative. Then as shownin [2,5,7,8,15]

12, V1 + V2, W, + W, } is also dissipative. In many cases, the
supply rates satisfy Wi(yy, )+ Wy(yz,12) = 0, for all uy = —y,
and up = yy, which implies that the solution (z;,z2) = 0 of the
feedback interconnection X3 is Lyapunov stable with Lyapunov
function V = Vy + W, P, 57,8, ]5}. We will apply this result
in deriving conditions for stability of the setup shown in Figure

1. Extension of the above result to the case wlhere a single
iz
r-—- - - - = — — N

Figure 3: Interconnected systems under consideration

LTI system G(s) is intertonnected to m independent systems, is
discussed in {7, 8, 15].

4 Robust Stability Conditions For Non-

linear Time-Varying Uncertainties

In this section we develop robust stability condition for LT1 sys-
tem with scalar nonlinear time-varying functions, as illustrated
in Figure 1. As discussed in Section 2, G(s) is an LTI system
and A := fg.,t) = diag[fi(y1,1), ... fm(Ym,1)] consists of m de-
conpled nonlinear functions. Robust stability for such system
will be developed by combining results from absolute stability
theory and the concepts of supply rates and storage functions,
a technique initially introduced in [7, 8, 15]. Absolute stability
theory, which is discussed in Popov [24], among others, coucerns
with determining stability of an L'T'l system coupled with a non-
linear feedback which is either time-invariant or time-varying.
The well known results in this theory is the frequency domain
criterion which states that if there exists a multiplier Z(s) he-
longing to a particular class of function Z, associated with a class
of non-linearities F. such that Re[Z(jw)G(jw)] > 0,Vw € |0, ),
then the system countaining the linear part transfer function G/(s)
having all the poles in the open left half plane and a nonlinear-
ity belonging to F. in cascade, in a negative feedback loop, is
absolutely stable. These criteria, however, suffer from a major
drawback in that they are graphical in nature, and thus difficult
to apply. Many works have been done with the aim at broadening
the'class of multiplier functions by restricting the nonlinearity to
be monotonic, odd monotonic ete. [21, 22, 25].

4.1 Time-Varying Monotonic Nonlinearities

In this subsection robust stability is developed for linear sys-
tem G(s) coupled with time-varying monotonic nonlinearities,
i.e. nonlinearities in the class M,. Since decoupled nonlineari-
ties are considered in this paper, the corresponding multipliers
will take the form W(s) = diag(W,(s),...,W,.(s)). In view of the
results presented in flg, 22, 7, 8, 15}, the appropriate frequency
dependent multiplier associated with nonlinearities in the class
N, would be of the form

Wils) = aio + €iflio + Bios + L7 i (1~ il 5)(11)
aijy Bijs 5 2 00 miiBi; —@i; 20 (1.2)

The class of multipliers that has the form (4.1) and that satisfies
(4.2) will be denoted by M,,. For convenience in stating the
main result of this section, let us represent the bonnds on the -
nonlinearity sector in terms of diagonal matrices as follows:

Mu =M = diag(M1,.. ,Mum) = diag{ni,g, ..,mum ) € 75"
My = diag(myy, ..., ) 0 R

Prior to presenting the main tlheorem in this section, let us
define

24 o)
1) Hiy
Cii= . (Co)iy, M= . (M1,

O
E.m;,

i=1,..,ma

aim
A; = diag(—(ni; + ),
where (.); denotes the it* row of (.).
Following (7, 8, 15] let us further define matrices which carre-
sponds to the (A, B, () matrices for the system dynamics result-
ing from the augmentation of the multiplier to a shifted system,

A 0 0 ... 0 By

¢ A0 0 M,

A= €2 0 A 0 , Bo=| M2

Cm 0 0 A M,
Co=[Co 0 0 ...0 ]

Let m; = maz,(m;). Foreach i = 1,...,mand j = 1,...,my, let
o = 0,8; = 0,5; = 0, and R;; = 0if § > my;. Next, define

H; = diaglayj,...,0m;), 7=0,1,..,m
N; = diag(Byj...,Pm;)y 7=0,1,...,m
§; = diag(iry ey Nm)y F=0,1,..,my
Qo = diag(ey, ... tn)

R; = [ Ry, Ry Ry |

where /£;; are matrices with zero elements except the (Z;;: ny; +

j)”‘-term, which is 1. Now, we are ready to present the main
results of this section, which can be viewed as generalization of
Theoren 4.1 in {7, 8, 15].

Theorem 4.1 Sufficient condition for asymptotic stability of in-
terconnection of the system G(s) and the nonlinearities f;(.,t) €

mst = 1,...,m, is that there exist multipliers Wi(s) € M., such
that the following LMI

AP+ PA, PR, - (43)
(PB, - CLY —(R+ ) "'
has a symnetric positive definite solution P > 0, where C, and
R are defined by

- my
Ca i= (HoCu + NoQuCu + NoCada + 3 H;(C — R;))
j=1
(4.4)
oy
R = (4.5)

(NoCaBa + NoQoM ™' 4+ 3 I;M™Y)
=0

Before proving this theorem, we present an intermediate result
concerning with the storage functions and supply rates for the
system dynamics G; with state space representation

2i(t) = Aizi(t)+ Biyi(t)
—ui(t) = gilzi(1),t),
that are constructed by combining fi(.,1) and W '{s) in case

My = O(refer to Figure 4). The prool is based on the idea and
procedures proposed in [7, 8, 15].

(4.6)
(4.7)
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Proposition 4.1 Consider a differentiable monotonic time-
varying nonlinear functions fi(.,t) € M, along with multipliers
Wi(s) € M,.. Define a shifted nonlinearity fi(§i,t) as
fildint Wy /v
f(!{1)= j(—yl’ )y (4.8)
¥ 1 M3 filyin )/ v

Then, the triple {G;, Vi,W;} is dissipative, with storage function
V; and supply rate W; given by

v.-(g.—,z;l,...,z,-,,,”) = ﬂ,-o(foy-‘ f'-(a,l)da + %M‘:lu?)
+ X7 B fo” filo,t)do (4.9)
Wi(gi, w) = [Z75% ai;(§; — zij) + Biodi + (aio + Bio€ )i,

(4.10)
where the signals §j;, z;; and §; are given by
% = w—M"fiE1) (4.11)
;¥
5 ol .12
J Bij(s + m; + &) (1-12)
G = Wi(s)iii + BioM s, (4.13)

respectively.

Proof: In the following we apply three major steps from {7, 8, 15}:
loop transformation, multiplier augmentation and checking dis-
-sipativeness.

Step 1 : Loop Transformation. To apply absolute stability the-
ory, a loop-transformation is needed to convert the sector re-
striction [0, My] to an infinite sector [0,00) [23]. Such a loop
transformation is depicted in Figure 4.

Figure 4: Loop transformation which converts bounded sector
[0, My} to to infinite one {0, co), followed by multiplier augmen-
tation;

For each nonlinearity fi(y:,t), with y; # 0, let us define f.-(g.-, t)
as in equation (4.8). It has been shown in [7, 8, 15] that fi(,1)
is indeed differentiable and satisfies 0 < i%(‘?ﬂ, and hence is
monotonic. Thus, the following conditions hold for this shifted
system [25, 21}

ofi(o,t) >0, Yo e R, Vi, Vi {4.14)
(filor,0) = fi(o2,1))(01 — 02) 2 0,Vo1,02 € R, V1,Vi(4.15)

while restriction on the time-variation (2.1) reduces to

/”i Mda; < c.-o;f(o.',l), ¢ >0, Vi {4.16)
0

ot

Note that under the transformation the shifted LTI system G(s)
is given by

G(s)=G(a)+ M~!

Step2: Multiplier Augmentation. It is pointed out inJ?, 8,15
that the expression W;(s)j; contains terms of the form describe
in (4.12). Denoting z; as the system states of G:, the augmenta-
tion of the dynamic of each term in the multiplier to the system
can be done by representing (4.12) as [7, 8, 15|

(4.17)

a

5+ (0 + @)z = %—Jy = Z(Cor — MTu)  (4.18)
s 5

where (.); denotes the ith row of ).

Step 8: Checking dissipativity. It has been shown in (2, 3, 4]
that the appropriate supply rate for checking system’s passivity
is the product of its inputs and outputs. Following {7, 8, 15], we
consider output signal §; of the form (4.13), which is actually the
signal 9; in Figure 4 added with signal of the form ﬂ,»oM.f'su.'.
This signal §; can be represented as follows:

B o= Wis)Gi + BoM; sy

= ,; a;;(1 - m)ﬂi + (aio + €iPio + Pios)

x{(y — M 'u); + ﬂ.—oM;lsu,-
myy

= Z aii(§i — zij) + (@io + €ifio + Bios)yi
=

—(@vio + €iBio) M7 w;
myy

= > a;(iii — i) + Biosy: + cofii + €iBiofi
i=1

(4.19)

In the above calculation, we have used the definition of Wi(s) in
(4.1), §i in (4.11), and z;; in (4.12).
i‘low, the supply rate Wi(#i,u;) can be chosen as follows (7, 8,
15],
miy

Wi, wi) = [Y eii(fi — 2i;) + BioYi + ciofi + €iBiofi]ui (4.20)
=1
Note that V;(0,1) = 0 and V; is nonnegative. By defining u;; =
fi(zij,yt) and u; = fi(ii, 1), we obtain

i1 miy

Vi = Y Bifilzi 0 + ) B /'lj ———afi((?:’t)da + Brol il 1)
j=1 j=1 o

+Mi:1ﬁ(g-"t)

dfi(§i,1) W §fia,t)
dt +/ o0l
ms myy

= > But+ 3 By [ %d" + Pl
j=1 j=1

—lﬂ . /ﬁ.‘ af;(d,t)
+M; 7 u; + A 5 do}

mi mi1

= Y Biuiszg + 3 By '/0'-, af'g;’ l)da + Bio[widi
=1 =t

Yi
./
Q

where in the last equation we have used the definition of §
deséribed in (4.11). From equations (4.‘2|), and (4.14)-(4.10),
the following inequalities can be infered for i = 1,..,m and
j =1,...,m,

2fi(o,t)
51 dao} (4.21)

0 < wofiiu, (4.22)
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0 < oy(di ~ zi;)(ui — wij) (4.23)
0 < (miBiy — oij)zjuij (4.24)
0 < [-Bio /y' 'a—f‘i('(;'—t)do + Biocifinil (4.25)
0 < (- Zﬁ-,[] af“" le,t) 4y +2ﬁ.,cz-,uul (4.26)

Adding equations (4.22)-(4.26) to equation (4.21), yields
Vi € ST wig(Bigdis + (i By — i)zif)
+ T8 @ (Fi - 2i )i — i) + (Bio¥i + criodi)us
+BioeiFiwi + 721 Bijeiziji;

By collecting terms and using relation (4.18), we finally have

Vi < [Z ai (5 — 2-,) + Biogi + ciofi + Bioeidiilui = Wil#i, ws)

=1

Now, it follows from Definition 3.1, that the triple {G;, Vi, WV;}
corresponding to fi{.,t) € M, and W(s) € M,, is dissipative
with storage function V; given in (4.9) and supply rate W; given
in (4.10). a

- Proof of Theoremn 4.1: The proof of this theorem follows from
the techniques introduced in 7, 8, 15] by employing the result
presented in Proposition 4.1, the discussion concerning stability
of interconnected systems at the end of Section 3, and the Schur
complement formula for matrix inequalities. a

4.2 Time-Varying Odd Monotonic Nonlinearities

In this subsection, robust stability is considered for a LT1 coupled
to time-varying odd monotonic nonlinearities, i.e. time-varying
nonlinearities in the class A,,,. Multipliers associated with such
nonlinearities have the form {19, 17, 7, 8, 15}

Wi(s) = aio + €fio + Bios + LT11 ai;(1 ~ —,T?%vf,_H_T)

+Zm.2 it a'J(l+TmCL;I'uTTj (427)
a‘j’611,1]|1 2 07 nl]ﬂl] — Oy5 20 (4.28)

with m;; # m;;. The class of multipliers that has the form (4.27)

with myp # m;; and that satisfies (4.28) will be denoted by Mom.

As expected the class of multipliers M,,, is more geneml than

the cl:[xss .M,T The following holds for nonlinearities in the class
MNom, [21, 25

0 < oy fi(o1,t) + 02fi(02,1) + 01fi(02,1) — 02 fi o1, 1)
Yoy, 03 € R,VE> 0,V (4.20)

We then have the following theorem concerning the stability of
the interconnected system, stated by extending the definition of
matrices /1, N;, S; and .R; in Section 4.1 to also include terms
having mdlcos my + 1,...;my with mg = max;(m;).

Theorem 4.2 Suﬁ"czent condition for asymptotic stability of the
neqgative feedback interconnection of the system G(s) and the non-

linearities f;(.,1) € N,m,i = 1,...,m, is that there erist mullipli-
ers Wi(s) € Mo,,, such that the followiny LMI

ALP 4 PA,
(PB, - CoY

rB, -,

She | <O (4.30)

has a symmetric positive definite solution P > 0, where ', and

R are defined by

my
(HoCa + NoQoCa + NoCaAa + 3 H;(C. — 1))

j=1

C. =

+ 27 H;(Ca + R;))

j=myi+1

(4 31)

mz
(NoCaBao + NoQoM ™' + 5" H;M)

=0

R = (4:32)

The proof of Theorein 4.2 will be based vn the fillowing praposi-
tion (see |7, 8, 15] for the case of time-invariant nonlinearities).

Proposition 4.2 Consider a differentiable odd rmonotanic time-
varying nonlinear functions fi(.,1) € Nom, alotig with multipli-

ers Wi(s) € Myn. Define a shifted nonlinearity fi(#i,1) as in
equation ({.8). Then, the triple {G; ,V;, W} is dissipative, with
storage function V; and supply rate W; given by

Vilfir 2ty o Zimn ) = Biol [ Ji(o,t)do + M7 u?)
+ 7 B o filo,t)do (4.33)
Wilgi,w) = (070 aij(§ — 2i3) + T2, e ai(§ + 235)

+Bioti + (o + Pioes)tifui (4.34)

where §;, z;; and §; arve given by equations (4.11), 4.12) and
(4.13), respectively.

.Proof: The loop transformation is done in the same way as those

of Proposition 4.1. The establishment of the supply rate (4.34)
follows from similar technique adopted in the proof of Proposition
4.1, while noting that now m;; # mj,.

Using the result of Proposition 4.1, in particular and expression
for V; and inequalities (4.26), we have

Vi < (52 ei;(Fi — 2i5) + Bt + o + Pioeidii]mi

b Byt + T, Bariug (4.35)

Note that inequality (4.29) yields

0 < al(2i; + Fo)ui + (215 — Fi)ugg) (4.36)
Adding equations (4.24) and (4.36) to (4.35), yields

mq

Z o (§ii — 2i5) + Bioti + aiofii + Foeifilus

m;a
+ T (Biu i+ Bz + aisl (2 + Fi)ui
= ™Mi141
F i ~ Gy + (0 Bi; — e)zijuig) (4.37)

Now, replacing 2; using equation (4.20), and canceling terms,
equation (4.37) becomes

myy

Vi < [Z o3 (fi = i) + Bio¥i + wio¥i + Bioei i

1=1
mez
+ 5 a4 e = Wi, w)
J=mitg

which shows that the the triple {G,,V.,M).} corresponding to

[il1) € Ny and Wi(s) € Moy, is dissipative with storage

function V; given in (4.33) and supply rate W given in (4.34).
@]

Proof of Theorem 4.2: The proof can be verified in the same way
as those of Theorem 4.1 using the result presented in Proposition
4.2. o
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4.3 Time-Varying Odd Monotonic Nonlinearities

with Saturations

In this subsection, we consider stability of a LTI system inter-
connected to time-varying monotonic nonlinearities with satura-
tions, i.e. nonlinearities in the class A,.,.

Being the subclass of odd monotonic nonlinearities, the stabil-
ity criterion derived for the interconnected systems under time-
varying monotonic nonlinearities with saturations, will further
reduce conservatism of those derived for monotonic and odd
monotonic nonlinearities. Following [21, 25], the appropriate
multipliers for such nonlinearities are given by

Wils) = eio + €iBio + Bios + 37} ai{1 - Eﬁm)

e (1 (- ) + goryii—y) (4.38)

D<€ (4.39)

with the other parameters as defined in previous subsections,
The class of multipliers that has the form (4.38) and that satisfies
(4.28) and (4.39) wilt be denoted by M,,,,. As expected, the
class of multipliers M,,,, is more general than the classes M.,

and M.

Theorem 4.3 Sufficient condition for asymptotic stability of the
negative feedback interconneciion of the system G(s) and the non-
linearities fi(.,1) € Noms,i = 1,...,m, is that there ezist multi-
pliers Wi(s) € Mom, such that the following LMI

AP+ PA, PB,-("

(PB.—Cly R+ 8y | <°

(4.40)

has a symmetric positive definite solution P > 0, where C, and

R are defined by

my
(HoCa + NoQoCa 4 NoCadu + Y H;(Co - R;)

Ce =
=1
+ 30 Hi(Cat (I =T;)Cut Ry)) (1.41)
j=my+l1
- my
R = (NoCoBo+ NoQoM™'+ 3 H;M™!
=0
my
+ o M+ -T)M)
J=my+1
(1.42)

and where T := diag(ryj, ..., Tm;)-

The proof of Theorem 4.3 relies on the following intermediate
result.

Proposition 4.3 Consider a differentiable odd monotonic time-
varying nonlinear functions fi( ;1) € Noms, along with multipli-

ers Wi(s) € Moms. Define a shifted nonlinearity fi(§i,t) as in
equation ({.8). Then, {Gi, Vi, W;} is dissipative, with storagc
function Vi and supply rate W; given by
Vil@ir 23ty ons 2imy ) = Bio(J§* filo, O)do + 1007 ?
+ 00 85 1Y filoyt)do (4.43)
Wil wi) = (700 (@ — 2i5) + 72 o (1 = 7
+2i;) + Biot + (aio + Bioe:)ilui (4.44)

where §i; and §; are given by equations (4.11) and (4.18), respec-
tively, while z;; is now given by

i ¥ a .
i = 5i,is+n.,+t.i 'f] = Lmp (4 45)
1 = aiy¥i e . . Rl
m lf] = M4, e T2

Proof: The loop transformation is done in the same way as those
of Proposition 4.1. The establishment of the supply rate (4.43)
follows from similar technique shown in the proof of Proposition
4.1, while noting that now the multipliers belong to the class
Moms.

In view of (2.6) and (4.39), the following inequalities hold,

(m;Bij — auj)mijzizni; 2 0 (4.46)
ail(rijzi — B)wis + (0 = 7)o + zi5u] 2 0,
' Vo< 7y <1 (4.47)

Next, using the result of Proposition 4.1 and inequalities (4.25)
and (4.26), we have

mi

Vi < [Z i (i ~ zi;) + Bio%i + ioFi + Bioei§ilui
=

mi

+ 3 Bymysg 4

J=mig

",y

3 Bieizgm

I=mirg

(4.48)

Adding equations (4.46) and (4.47) to (4.48) yields

mi

Vi < Z o §i — 2i5) + Bio%i + ciofii + PBioeidiu;
=

mi
Y [Bywidg + Beiziw; + agl(nijzg — §)w;
J=mirgs

+(1 = 7ig)Bhui + zigwl + (03,805 — aij)ijzijwis] (4.49)

Now, replacing #;; using equation (4.45) for j = my4q,..., mea,
and canceling terms, equation (4.49) results in

. m.l
Vi < [Z o5 (F — 2i) + Bio%i + ciofii + Pioesiii
=

myg
+ Z (L= 1i5)Fi + 2i5]ei = Wi(§i, w:)(4.50)

J=mirgy

which shows that the triple {Gi, Vi, Wi} corresponding to

fi(,1) € Noms and Wi(s) € Mo, is dissipative with storage

function V; given in (4.43) and supply rate W; given in (4.44),
a

Proof of Theorem 4.3: The proof can be verified in the same way
as those of Theorem 4.1 in using the result presented in Propo-
sition 4.3, ' 8]

4.4 Time-Varying Nonmonotone Nonlinearities

In this subsection we consider stability of a LTI system intercon-
nected to time-varying nonmonotone nonlinecarities belonging to
the class A,,,,. The nonlinearitics are assumed to be bounded
in sector [0, M], but not necessarily monotonic. This class of
nonlinearities is more general than the class of monotone nonlin-
earities and all its subclasses, but more restricted than the class
of all functions in sector [0, M]. For further properties of the
class Mo see [20]. Tn view of the results presented in [20], the
multipliers for this class of nonlinearities are taken of the form

™my B
Wi(s) = aio + Buweis + Y Nag(1 - —— 1y (451
(s) o + Bioe ]z::l 5 Biils T F Ca)) (4.51)

where \; > 1 and restriction on parameters (4.2) is replaced by

7/-'1'ﬂ|'j
)2
( A2 - n,j) 20

(4.52)
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The class of multipliers that has the form (4.51) and that satisfies
(4.52) will be denoted by M,,,,. Let us define

Lo :=diag(Ar,. .., Am) (4.53)

We have the following results concerning the stability of the in-
terconnected systemn.

Theorem 4.4 Sufficient condition for asymplotic stability of the
negative feedback interconnection of the system G(s) and the non-
linearities fi(.,1) € Mam,1 = 1,...,m, is that there exist multipli-
ers Wi(s8) € Mum such that the following LMI

AP +PA PBa-C)
a a Ja “a 0 A4.54
(PB.—ClY —(R+1)| < (1:54)
has a symmelric positive definite solution P > 0, where C, and

R are defined by

my
Ca 1= (HoCa + NoQoCoa + NoCaAa + Y H;(10Ca — R;)(4.55)
i=1
my
R:= (NoCalBa + NoQoM ™" + HoM ™' + 3 H;LoM ™' {4.56)

=

The proof of Theorem 4.2 relies on the following intermediate
result, the proof of which is omitted for lack of space.

Proposition 4.4 Consider a differentiable nonmonotonic time-
varying nonlinear functions f;(.,t) € My, along with multipliers
Wi(s) € Mun. Define a shifted nonlinearity f(§;,t) as in (4.8).
Then, {G.,V;,W.} is dissipative, with storage function V; and
supply rate W; given by

Vi(Fi, Zity ooy Zimgy ) = ﬂ,o(f,)g' j:;(a,t)do + %]\1;‘1:?)
+ 570 Bis o filo,t)do (4.57)
Wi, i) = [E72) 0 (N = i) + Biodi + (eio + Bioci) ]
(4.58)

where the signals §;, z;; and §; are given by (4.11), ({.12) and
(4.13), respectively.

Remark 4.1

Stability conditions stated in the above theorems can be equiv-
alently expressed in terins of solutions to Riccati equations, in-
stead of LMI. LMI in Theorem 4.1, for example, can be equiva-
lently expressed as

ALP + PAs+ R+ [HoCa + NoQoCa + NoCaAa
+ T Hi(Ca = Rj) = BLPY R

i
% [HoCy + NoQoCa + NoCaAg + ST H;(Cy ~ Ry) — BLP)
(4.59)

=1

=0
with R positive definite, provided that Ry := (R + R') is posi-
tive definite. Since the LMI defines a convex set {3], and since
eflicient convex optimization algorithm exists to find its solu-
tions [30], it conld provide a valuable alternative to analysis
and synthesis of robust control, as has been shown recently in
[27, 28,,29, 30, 36, 37].
Remark 4.2
When the noulinearities are restricted to be time-invariant in
Theorems 4.1 and 4.2, the results of How [7, 8, 15] are recov-
ered. [t shown in [7, 8, 15], that equivalent lrequency domain
for Lyapunov stability of G(s) interconnected to m nonlineari-
ties in certain cases is connected to u upperbounds with mixed
real and complex perturbations. In view of the above observation
in {7, 8, 15}, the results of the present paper could also be con-
sidered as an extension of mixed yt upperbounds with nonlinear
time-varying perturbations.
Remark {.3
Using loop transformation described in [7, &, 15] and by appro-
priate modifications to the shifted system G(s) and nonlinearity

f(..1), the previous results can be extended to the case where
the sector has both upper and lower bounds.

5 Numerical Example

In this section, a numerical example is presented to demonstrate
the effectiveness of the robust stability analysis presented in Sec-
tion 4. Let us consider a closed-loop system, under noanlinearities
acting on the sensor as dépicied in Figare 5, whers the transfer
functions of the plant and the controller are given by

0878 0.864
P(s) = w5im [ 1.082 1.006 ]
. X 755 - | 0
Cloy=2% 10" it ]

respectively. The multiplicrs are taken of the form (4.1), with
parameters chosen as follows,

app=ayp=ag=ap =0y =0 =1, fio=Po=1
Bu=Pra=Pa = Par=2
mi=me == =1, g =6=1
M= [ 10 ]
For the above choice of parameters, we found that there ex-
ists positive definite solution J° to the LMY (4.3). This indi-
cates that the closed-loop system is asymptotically stable under
nounlinear time-varying perturbations with sector bounds m,; =
my2 = 1 and rate of variation restricted by f(f‘ 2 ‘a':"‘ doy <
eo;fi(oi 1), & = 1, fori = 1,2. To confirm this result, time-

responses of ontputs are shown in Figure 6, with nonlinearities
restricted to be time-invariant.
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Figure 5: Feedback control systems under structured nonlinear
perturbations

Figure 6: Time responses of outputs 3, and y, when an impulse
is applied at
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