• 제목/요약/키워드: linear Matrix Inequality

검색결과 483건 처리시간 0.031초

헬리콥터 시스템의 지능형 디지털 재설계 (Intelligent Digital Redesign for Helicopter System)

  • 성화창;박진배;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.893-895
    • /
    • 2005
  • We represent an efficient intelligent digital redesign method for a Takagi-Sugeno (T-S) fuzzy system. intelligent digital redesign means that an existing analog fuzzy-model-based controller converts to equivalent digital counter part in the sense of state-matching. The proposed method performs previous work, moreover, it allows to matching the states of the overall closed-loop T-S fuzzy system with the predesigned analog fuzzy-model-based controller. And the problem of stability represent convex optimization problem and cast into linear matrix inequality (LMI) framework. This method applies to the helicopter systems which are the nonlinear plant and determine the feasibility and effectiveness of the proposed method.

  • PDF

헬리콥터 시스템의 지능형 디지털 재설계 (Intelligent Digital Redesign for Helicopter System)

  • 성화창;박진배;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.3105-3107
    • /
    • 2005
  • We represent an efficient intelligent digital redesign method for a Takagi-Sugeno (T-S) fuzzy system. Intelligent digital redesign means that an existing analog fuzzy-model-based controller converts to equivalent digital counter part in the sense of state-matching. The proposed method performs previous work, moreover, it allows to matching the states of the overall closed-loop T-S fuzzy system with the predesigned analog fuzzy-model-based controller. And the problem of stability represent convex optimization problem and cast into linear matrix inequality (LMI) framework. This method applies to the helicopter systems which are the nonlinear plant and determine the feasibility and effectiveness of the proposed method.

  • PDF

[ $H_{\infty}$ ] Control of 2-D Discrete State Delay Systems

  • Xu Jianming;Yu Li
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권4호
    • /
    • pp.516-523
    • /
    • 2006
  • This paper is concerned with the $H_{\infty}$ control problem of 2-D discrete state delay systems described by the Roesser model. The condition for the system to have a specified $H_{\infty}$ performance is derived via the linear matrix inequality (LMI) approach. Furthermore, a design procedure for $H_{\infty}$ state feedback controllers is given by solving a certain LMI. The design problem of optimal $H_{\infty}$ controllers is formulated as a convex optimization problem, which can be solved by existing convex optimization techniques. Simulation results are presented to illustrate the effectiveness of the proposed results.

Robust Reliable H$\infty$ a Control of Continuous/Discrete Uncertain Time Delay Systems using LMI

  • Kim, Jong-Hae;Park, Hong-Bae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권2호
    • /
    • pp.121-127
    • /
    • 1999
  • In this paper, we present robust reliable H$\infty$ controller design methods of continuous and discrete uncertain time delay systems using LMI (linear matrix inequality) technique, respectively. Also the existence conditions of state feedback control are proposed . Using some changes of variables and Schur complements, the obtained sufficient conditions are transformed into an LMI form. The closed loop system by the obtained controller is quadratically stable with H$\infty$ norm bound for all admissible uncertainties, time delay, and all actuator failures occurred within the prespecified set. We show the validity of the proposed method through numerical example.

  • PDF

Periodic Sampled-Data Control for Fuzzy Systems;Intelligent Digital Redesign Approach

  • Kim, D.W.;Joo, Y.H.;Park, J.B.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1492-1495
    • /
    • 2005
  • This paper presents a new linear-matrix-inequality-based intelligent digital redesign (LMI-based IDR) technique to match the states of the analog and the digital T-S fuzzy control systems at the intersampling instants as well as the sampling ones. The main features of the proposed technique are: 1) the affine control scheme is employed to increase the degree of freedom; 2) the fuzzy-model-based periodic control is employed; and the control input is changed n times during one sampling period; 3) The proposed IDR technique is based on the approximately discretized version of the T-S fuzzy system; but its discretization error vanishes as n approaches the infinity. 4) some sufficient conditions involved in the state matching and the stability of the closed-loop discrete-time system can be formulated in the LMIs format.

  • PDF

Robust non-fragile $H_{\infty}$ control of singular systems

  • Kim, Jong-Hae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2112-2115
    • /
    • 2005
  • This paper considers the synthesis of non-fragile $H_{\infty}$ state feedback controllers for singular systems and static state feedback controller with multiplicative uncertainty. The sufficient condition of controller existence, the design method of non-fragile $H_{\infty}$ controller, and the measure of non-fragility in controller are presented via LMI(linear matrix inequality) technique. Also, through singular value decomposition, some changes of variables, and Schur complements, the sufficient condition can be rewritten as LMI form in terms of transformed variables. Therefore, the obtained non-fragile $H_{\infty}$ controller guarantees the asymptotic stability and disturbance attenuation of the closed loop singular systems within a prescribed degree. Finally, a numerical example is given to illustrate the design method.

  • PDF

Robust and Non-fragile $H_{\infty}$ Control for Descriptor Systems with Parameter Uncertainties and Time Delay

  • Kim, Jong-Hae;Oh, Do-Chang
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권1호
    • /
    • pp.8-14
    • /
    • 2007
  • This paper describes a robust and non-fragile $H_{\infty}$ controller design method for descriptor systems with parameter uncertainties and time delay, as well as a static state feedback controller with multiplicative uncertainty. The controller existence condition, as well as its design method, and the measure of non-fragility in the controller are proposed using linear matrix inequality(LMI) technique, which can be solved efficiently by convex optimization. Therefore, the presented robust and non-fragile $H_{\infty}$ controller guarantees the asymptotic stability and disturbance attenuation of the closed loop systems within a prescribed degree in spite of parameter uncertainties, time delay, disturbance input and controller fragility.

엑츄에이터 흔들림 제어를 위한 트랙킹 Gain-Up 제어기 설계 (A Tracking Gain-Up Controller Design for Controlling the Shake of Actuator)

  • 진경복;이문노
    • 제어로봇시스템학회논문지
    • /
    • 제15권10호
    • /
    • pp.988-993
    • /
    • 2009
  • In this paper, we deal with a tracking gain-up controller design problem to control effectively the shake of tracking actuator after a track seek. A minimum tracking gain-up open-loop gain can be calculated by estimating the shake of tracking actuator and a desired transient specification is considered to diminish effectively the shake of actuator. A tracking gain-up controller is designed by considering a robust $H_{\infty}$ control problem with a regional stability constraint. The proposed tracking gain-up controller design method is applied to the track-following system of a DVD recording device and is evaluated through the experimental results.

시간지연을 가지는 비선형 불확실성 이산 시스템의 퍼지 견실 $H^{\infty}$ 제어기 설계 (Fuzzy Robust $H^{\infty}$ Controller Design for Discrete Uncertain Nonlinear Systems with Time Delays)

  • 이형호;조상현이갑래박홍배
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.227-230
    • /
    • 1998
  • In this paper, we propose the design method of fuzzy robust H$\infty$ controller for the uncertain nonlinear discete-time systems with time delay. First, we represent a nonlinear plant with a modified T-S(Takagi-Sugeno) fuzzy model. Then design method utilizing the concept of PDC (parallel distributed compensation) is employed. For the modified T-S fuzzy model with uncertainty and delay, the sufficient condition of the quadratic stabilization with an H$\infty$ norm bound is presented in terms of Lyapunov stability theory and fuzzy robust H$\infty$ controller design method is given by LMI(linear matrix inequality) approach. Also an illustrative example is given to demonstrate the result of the proposed method.

  • PDF

시간지연을 갖는 이산시간 대규모 시스템의 강인 제어기 설계 (Robust Decentralized Stabilization of Uncertain Large-Scale Discrete-Time Systems with Delays)

  • 박주현
    • 전자공학회논문지SC
    • /
    • 제37권6호
    • /
    • pp.7-14
    • /
    • 2000
  • 본 논문에서는 부 시스템간의 상호 연결 시 시간지연을 갖는 이산시간영역의 섭동을 갖는 대규모 시스템의 강인 안정화를 위한 분산 제어기를 설계한다. 안정화를 도모하기 위하여 상태 궤환 제어기를 이용하였으며, 이러한 제어기의 존재를 보장하는 충분조건을 리아프노프 안정성 해석법을 이용하여 선형행렬 부등식으로 표현하였다. 이 부등식의 해는 다양한 최적화 알고리즘을 이용하여 쉽게 찾을 수 있으며, 이 부등식의 해로부터 제어기의 게인 행렬도 쉽게 구할 수 있다. 제안된 방법을 예제를 통하여 살펴보았다.

  • PDF