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Robust Reliable H“ Control of Continuous/Discrete
Uncertain Time Delay Systems using LMI

Jong Hae Kim and Hong Bae Park

Abstract

: In this paper, we present robust reliable H " controller design methods of continuous and discrete

uncertain time delay systems using LMI (linear matrix inequality) technique, respectively. Also the existence
conditions of state feedback control are proposed. Using some changes of variables and Schur complements, the
obtained sufficient conditions are transformed into an LMI form. The closed loop system by the obtained
controller is quadratically stable with H "~ norm bound for all admissible uncertainties, time delay, and all actuator
failures occurred within the prespecified set. We show the validity of the proposed method through numerical

example.
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I. Introduction

The robust H” controller design method of parameter
uncertain time delay systems has attracted the attention
of many control researchers[1,2,345] because the
dynamic behaviour of many physical processes contains
inherent time delays and uncertainties and can be
modeled by an uncertain system with time delay.
However, these control designs may result in
unsatisfactory performances or even unexpected insta-
bilities in the event of control failures. In practice,
failures of control components are often found in real
world. Hence they should be taken into account when a
practical control system is designed. Recently Seo et
all6] and Veillet et all7] consider the problem of
reliable H® control design. Especially, Seo et al[6]
considered the problem of robust and reliable H~ control
design for linear uncertain systems with time-varying
norm-hounded parameter uncertainty in the system
matrix and also with actuator failures among a
prespecified subset of actuators. However they did not
deal with time delay. Gu et al[8] and Wang[9] treated
the problem of robust H~ reliable control for linear
state delayed systems with parameter uncertainty
" through algebraic Riccati equation approach -in continuous
time case. However, there are some disadvantages in
their works. Firstly, the results were conservative in
pre-selection of some starting variables in solving
algebraic Riccati equation. Secondly, their works did not
consider parameter uncertainties in all system matrices.
Finally, most of works treated robust reliable H™
controller design algorithms in continuous time case
only. Since LMI(linear matrix inequality) toolbox by
convex optimization algorithms has been developed, our
objective is to find static state feedback controllers in
continuous time case and discrete time case through
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LMI technique, respectively.

In this paper, we present the design method of state
feedback controller satisfying quadratic stability with H™
norm bound for all admissible uncertainties, time delay,
and all actuator failures occurred within the prespecified
subset in continuous and discrete time case. The
sufficient conditions and the controller design methods
are proposed. Using LMI toolbox, the solutions can be
easily obtained at the same time. Also, examples are
demonstrated.

II. Main results
Consider the system described by uncertain time
delay systems

() = [A+4AWD () +[A;+ A ()]x(t—d)
+[B,t+ 4B, (£)]u(t) + [B,t 4B, (£)1uw(t)

2(8) = [CHACD)]x(t) + [ Ca+ A4C L) 1x(i— d)
+[D+ 4D, ()] £) +[D,+ 4D ()1w( )

x(t) = ¢(t), te[*d, 0], (1)

where x(#)eR" is the state, w(£)eR™ is the control
input, w(#)eR? is the square integrable disturbance
input, z(¢#)R” is the controlled output, and ¢(#) is a
continuous/discrete  vector valued initial function. All
matrices have appropriate dimensions and we assume
that all states are measurable for state feedback. In
here,

x(t) : CT

&(t) = 2

x(¢-+1) : DT

and time delay is defined as

d= { positive real number: CT 3)
positive integer : DT

where CT and DT mean continuous and discrete time,
respectively. And the parameter uncertainties are defined
as follows:

A4A(8) 4B, (t) 4B,(1) 4ALt) @
4

AC(t) AD,(t) AD(t) ACL¢E)
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:[Z:]F(t)[Ex E, E, E,l,

where H,, H,, E,, E,, E,, E; are known real matrices

and F(¢) is an unknown matrix function which is
bounded by

F(1)eQ : ={F(ty: F()"F(£)<I, the elements ®)

of F(#) are Lebesgue measurable }.

Now, we classify actuators of the system (1) into
two groups similar to the works[6,7]. One is a selected
subset of actuators susceptible to failures, which is
denoted by 2={1,2,...,m}. This set of actuator is
redundant in terms of the stabilization of the system,
while it may contribute to and is necessary for
improving control performance. The other is a set of
actuators robust to failures,  which is denoted by
2c{1,2,...,m)— Q. We assume these actuators never
fail and also they are required in order to stabilize a
given system. Introduce a decomposition

B, = Bo+ B3 (6)

where Bg and B are formed from B, by zeroing out

columns. In the following, we let e=Q denote a
particular subset of susceptible actuators that actually
fail and adopt the following notation

B,= B,+B (N

where B, and B have meanings analogous to those
of Bg and By, respectively. From definitions of B,

B, Bg, and B, we can obtain the following facts

B.QBg = BaB§‘+BQ—aB?27a
®
B3B% = BB, +Bgo ,BY ..

Our objective is to find a memoryless state feedback
controller

u(t) = Kx(t) ©)]

that stabilizes the linear time-delay system (1) with a
given H” norm constraint on disturbance attenuation,
for all admissible uncertainties, time delay, and all actu-
ators failures occurred within the prespecified subset 2.
Lemma 1 : For given >0 and A>0, the system (1)
is QSH ™AF(quadratically stabilizable with H” norm
bound for all admissible uncertainties, time delay, and
all actuator failures occurred within the subset £2) by
state feedback control (9) if and only if the system

() = Ax(t)+ Ax(i—d)+ Bgu(t)
+[ B, vAH, Bgl w(t)
2(¢) = [1C O+ [ G ] x(t—d) o
7Ex 7Ed
+[ Palumn+ 1Dw 7AH: Dol 354)
7Eu 7Ew 0 0

is. QSH-AF for the same state feedback control (9).
Therefore the original system (1) can be transformed
into the system without parameter uncertainties and
particular subset of the susceptible actuators using some
manipulations [6,9,12,13].

For simplicity of manipulation, rewrite the system
(10) as follows:

Sx(t) = Ax(£)+ A x(t—d)+ Bu(t) + Buw(t)

11)
2(t) = Cx(t)+ Coxlt—d) + Dyult) + Dyw(2)
Where
B=Bs, B=[B, 7iH, By, @:[lc }
~E,
A
az:[lcd} D= 1DE s Dy= ID’” "H; Do) (19)
(t)
T 2BOT 2 w
z(t) [E(L‘)]’ w(t) Z}((;‘)).

Here w(t) and 2z(t) are additional input and output,
and o(#) is the output of faulty actuators. When we
apply the control (9) to the system (11), the closed loop
system from w(¢) to 2(¢) is given by

ox(t) = Aga(t)+Aplt—d)+ Buw(t)

(13)
2(t) = Cro(t)+ Cu(t—d)+ Dyw(t)

where Ax=A+BK and Cr= C+ D K.

Lemma 2 : For given >0 and A>0, the system (1)
is QSH™-AF with the controller (9) if there exist
positive definite matrices P and R such that

1) CT case

ALP+PAy+R PA, PB CF|
* —R 0 65
<0 (14)
* * —41 DY
* * * — 7]
i) DT case
—Pt Ay A, B 0
¥  —P+R 0 0 CE
* * -R 0 CTl|<0 (»
* * * — yzl DZT
* * * * -7

hold for time delay and all actuators failures occurred
within the subset 2. Here * mean symmetric terms.
Proof : Firstly, we define Lyapunov functional as

Vix(8): = X(l‘)TPX(l‘)+ftt_dx(r)TRx(r)dr: CT (16
OB+ S w(i)TRa(i) : DT

i=f—d
And it is noticed that conditions (14) and (15) imply
i) CT case
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AIP+PAx+R PA,
<0 a7
Alp -R
i) DT case
AFPA~P+R  ALPA,
<0, (18
AIPA, —R+ATPA,

respectively. Taking the derivative of the Lyapunov
functional (16) along the solution of (13) and the
difference of the Lyapunov functional (16) yields

i) CT case
Wx(2)) = (2) "Pe(8) +x(£) "Px(¢)
+ 2(#) "Ra(t) — 2(t— d) "Rx(t— d), 1
ii) DT case
AV, = V(x(t+ 1) — V(x(t))
= x(t+ 1) "Pe(t+ 1) —x(£) (P— Rx(t) (20)
—x(t—d) "R(¢t— d).

When assuming the zero input, we have

1) CT case
#(8) 1TTAEP+PAgx+R PA, [ ()
) }<0 (1)
2(t—d) Alp —R|lx(t—a)
i) DT case
L]
2(t—d) 2
<[ AkPAg—P+R  AELPA, [ (1) ]<0
ATPA,  —R+AIPA,Lx(t—d)

which ensure the quadratic stability of the closed loop
system. In the next place, assume the zero initial
condition and let us introduce
Ftaw s -2an Tanla s Cr
J= . . (23
2 LA D= #(0 @D DT

Then for any nonzero square integrable disturbance input

L3[0,00) : CT
(24)

w(t)e

5[0,) : DT
the performance measures are répresented by
Lie [ [TIEO O - 2a0 TR+ Vadr: CT (o5
SO TN = 2w KO+ 4V,: DT
and further substituting (19) and (20) into (25),
respectively. And let 8(2)=[x(¢) x(t—d) w(¢)], then

[Tonz.apdt: cT
Jai=]" (26)

g‘bs( n7z,8(¢) : DT

where Z, and Z, are defined as

Z=
ALP+PAg+ CLCx+R PA, CEC, PB
% —-R+CIC, I, <0,
* * —#I+DID,
270
ALPAy— P+ R+ CECy
Zy= ®
* (28)

ALPA,+ CIC, ALPB+ CLD,

AIPA,—R+ CIC, AIPB+ CID,
* — 21+ DI D,+ B™PB
This Z.<0 and Z,<0 imply llz(Dlls<Alw()ll, for any
nonzero w(t) of (24). Therefore when Z.<0 and Z,<0
are quadratically stable with an H° norm bound ¥ by
the controller (9). Using Schur complements, Z.<0 and
Z,40 are transformed into (14) and (15), respectively.
However the conditions (14) and (15) are not an LMI
form in terms of each finding variable P, R, K. It is
shown that the (14) and (15) are transformed into an

LMI form in the following theorem.

Theorem 1°: Consider closed loop system (13). For

<0.

given >0 and A>0, if there exist a matrix M and

positive definite matrices @, S such that

i) CT case
QAT+ AQ+ MTBT+ BM+ A,SAY
*
* (29)
&
B M'DT+QCT+A.SCL @
- 721 DZT O <0
* —I+ CA'LZSEZ; 0
* * — S
i) DT case
—Q+ASAT AQ+ BM
* -Q
3k %
N N (30)
E %k
B ASCT 0
0 QCT+M™DT @
— I D¥ 0 <0
x  —I+CSCY 0
* * )

holds for time delay and all actuators failures occurred
within the subset Q.

Proof : Using Schur complements and the changes of
variables

M=KP!' Q=P S=PR, (31

the obtained sufficient conditions (14) and (15) are
changed to (29) and (30), respectively. [ |

Remark 1 : The (29) and (30) are an LMI form in
terms of changed variables. Therefore robust reliable H”
state feedback controller K can be calculated from the

M=KP™! after finding the IMI solutions @, M, and
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S from the (29) and (30). Using LMI toolbox[11], the
solutions can be easily obtained at the same time.

Remark "2 : In the case of continuous time-varying
delay systems, the proposed method can be extended
easily. If the time-varying delay is assumed as

0<d(t) oo, d(t)<p<1, (32)
then the sufficient conditions are changed as

QAT+ AQ+MTBT+ BU+ A, SAY
ES
Ed
%

B M'DI+Q C'+A,3CT @
2 T
- b 010 33
* — I+ CdSCd
* * —-S
respectively. Here, §=(1—#)"1S.

Remark 3 : Using the proposed method, the following
system

Sx(1)

[A+AAD () +H A+ dAL)]x(t—dy)

+[ B+ 4B, ()1u(t) + [ Byt AB(#)]ult— dy)
+[B,+ 4B, (t)]w(t)

2(1) = [CHACDI(D) +[ Cy+ACL)]x(t— dy)
+[D,+ 4D, ()] t) +{ Dy+ AD L £)u(t— d5)

can be solved. In order words, the robust reliable H™

static state feedback controller of parameter uncertain
time delay systems in both states and control inputs
can be obtained,

III. Numerical example
Consider the uncertain time delay system of the same
example in [9] with

4 0.02 —0.1 —0.2 0.05 0.01
A=|—-0.3 3 —0.2},Ad=[ 0 —0.3 0}
0.3 —0.1 2 0 0 0
502 0 0.01 0
Bu=[o 3 0.1}, Bw=[0.1 o],
0.1 0 0.03 0 0.1
0.08 0 0
c:[O(-)2 8 002], Hx=[ 0 0.08 0},
- 0 0 0
0.04 0 0 0.02 0 0
Exz[ 0 0.02 0 } E/~| 0 002 0 }
0 0 0.04 0 0 0.02

and other matrices are zero matrices Wwith proper
dimensions. For simulation, we take y=3, A=1, F(§)=
sinf, d=5, and 2={3}, we have

5 0.2 0 00 0
Bg=|0 3 0}, Bo=100 0.1].
0.1 0 0 00 0.0

In the case of continuous time case, all solutions and
state feedback gain are

25.5851 —0.8625 —0.8744
Q= [—0.8625 34.7574  0.7573 }
—0.8744 0.7573  0.0723

—0.0509 80.1428 —0.7005
1.6534 —0.7005 87.1236 |

[ —31.7756 4.9475  0.0007

[79.1138 —0.0509 1.6534 ]
S =

M= | 0.2205 —51.0113 —0.3589

0 0 0

—2.6781 1.0132 —43.0195
K = [ 0.8449 —2.0233 26.4649
0 0 0

The obtained continuous time state feedback control
guarantees QSH “-AF. The states trajectories, control
inputs, disturbance inputs, and controlled outputs are
shown in Fig. 1. In the (a) of Fig. 1., the states
converge to zero as time goes to infinity. From this
fact, the obtained controller stabilizes the system
against the time delay, parameter uncertainty, and
actuator failure. The control inputs are given by (b),
(c), (d of Fig. 1. The (d) of Fig. 1. shows the third
actuator failure. From the relation (e), (f), and (g), the
H” norm bound of the closed loop system is
guaranteed within the prescribed y. The actual value
of yis 0.0719 (<3).

Similarly to the continuous time case, all solutions
and discrete time state feedback gain is obtained as
follows:

8.7877 304.2086 13.6712
—1.4222 13.6712 1.0808

|253.9382 231.4889  26.5253 }

b
il

l17.3768 8.71817 —1.4222}

S 231.4889 624.3931 —4.4061

26.52563 —4.4061 837.7026

—13.6346  4.2473 1.4096
M= [—5.8558 —291.9699 —11.2058},
0 0 0

—0.8970 0.0795 —0.8819
K= { 0.9999 —1.3483 8.0030 }
0 0 0

Also the obtained discrete time state feedback
controller guarantees QSH “~AF of the closed loop
system. The states trajectories, control inputs,
disturbance inputs, and controlled outputs in discrete
time case are shown in Fig. 2. Since the states
converge to zero as time goes to infinity, the
obtained controller stabilizes the system against the
time delay, parameter uncertainty, and actuator
failure in the (a) of Fig. 2. The control inputs are
given by (b), {(c), (d) of Fig. 2. The (d) of Fig. 2.
shows the third actuator failure. From the relation
(e), (), and (g), the H” norm bound of the closed
loop system is guaranteed within the prescribed 7.
The actual value of 7 is 0.1232(<3).

IV. Conclusion
We presented controller design algorithms of
continuous and discrete uncertain time delay systems
through LMI approach. From the Lyapunov functions
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Fig. 1. The states trajectories, control inputs,

disturbance inputs, and controlled outputs in
continuous time case.

and performance measures, the existence conditions of
state feedback controller were given. Also, the
obtained sufficient conditions were transformed into
an LMI form using some changes of variables and
Schur complements. Through numerical examples, the
closed loop system by the obtained state feedback
controller was quadratically stable with H" norm bound
for all admissible uncertainties, time delay, and all
actuator failures occurred within the subset £.
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States trajectories
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Fig. 2. The states trajectories, control inputs,

(1]

[2l

(3l

disturbance inputs, and controlled outputs
in discrete time case.

References

J. H. Kim, E. T. Jeung, and H. B. Park, “Robust
control for parameter uncertain delay systems in
state and control input,” Automatica, vol. 32, no. 9,
pp. 1337-1339, 1996.

E. T Jeung, D. C. Oh, J. H Kim, and H B.
Park, “Robust controller design for uncertain
systems with time delays: LMI approach,” Auto-
matica, vol. 32, no. 8, pp. 1229-1231, 19%.

J. H. Ge, P. M. Frank, and C. F. Lin, “Robust H~
state feedback control for linear systems with



Transaction on Control, Automation and Systems Engineering, Vol. 1, No. 2, December, 1999 127

state delay and parameter uncertainty,” Autormaticq,
vol. 32, no. 8 pp. 1183-1185, 1996.

4] L. Yu, J. Chu, and H Su, “Robust memoryless
H? controller design for linear time-delay systems
with norm-bounded time-varying ‘uncertainty,”
Automatica, vol. 32, no. 12, pp. 1759-1762, 1996.

Bl E. T. Jeung, J. H Kim, and H B. Park, “H”
output feedback controller design for linear systems
with time-varying delayed states,” IEEE Trans.
Autom. Contr., vol. 43, no. 7, pp. 971-974, 1998

[6] C. J. Seo and B. K. Kim, “Robust and religble
H® control for linear systems with parameter
uncertainty and actuator failure,” Automatica, vol.
32, no. 3, pp. 465-467, 1996.

[71 R. J. Veillette, J. V. Medanic, and W. R. Perkins,
“Design of reliable control systems,” IEEE Trans.
Autom. Contr., vol. 37, no. 3, pp. 290-304, 1992.

[8] Y. Gu, C. Geng, ]. Qian, -and L. Wang, “Robust
reliable H™ control for uncertain time-delay
systems,” American Control Conference in Phila-

Jong Hae Kim

He was born in Korea, on January
10, 1970. He received the B. S, M,
S., and Ph. D. degrees in electronic
engineering from Kyungpook National
University, Taegu, Korea, in 1993
1995, and 1998, respectively. He is
currently with STRC(Sensor Tech-
nology Research Center) at Kyungpook National Uni-
versity since 1998, He received ‘International Scholarship
Award from SICE(Japan) in 1999 and ‘Young Resear-
cher Paper Award from ICASE m 1999. His areas of
research interest are robust control, mixed HY/H®
control, nonlinear control, the stabilization of time-delay
systems, non-fragile control, reliable control, and industrial
application control. He is a member of IEEE, IEEK and
ICASE.

delphia, Pennsylvania, pp. 2415-2416, 1998,

[9] Z Wang, “Robust H™ reliable control for linear
state delayed systems with parameter uncertainty,”
American  Control Conference in Philadelphia,
Pennsylvania, pp. 2415-2416, 1998,

[10] S. Boyd, L. E. Ghaoui E. Feron, and V.
Balakrishnan, Linear Matrix Inequalities in System
and Control Theory, SIAM, 1994,

[11] P. Gahinet, A. Nemirovski, A. J. Laub, and M.
Chilali, LMI - Control Toolbox, The Math Works
Inc, 1995.

[12] K. Gu, “H~ control of systems under norm
bounded uncertainties in all system matrices,”
IEEE Trans. Autom. Contr.,, vol. 39, no. 6, pp.
1320-1322, 1994.

[13] L. Yuan, L. E. K. Achenie, and W. Jiang, “Robust
H? control for linear discrete-time systems- with
norm-bounded time-varying uncertainty,” Systems
& Control Lett., vol. 27, pp. 199-208, 1996.

=]

Hong Bae Park

He was born in Korea, on March 6,
1951. He received the B. S. and M.
S. degrees in electronic engineering
from Kyungpook National University,
Taegu,  Korea, in 1977 and 1979,
. L,uriik  respectively, and the Ph. D. degree
in electrical and computer engineering from the
University of New Mexico, Albuquerque, New Mexico,
in 1988. He is currently a Professor in School of Elec—
tronic and Electrical Engineering,- Kyungpook National
University. He received ‘Hae-Dong Paper Award from
IEEK in 1998, His current research interests include
robust control, optimal control’ to industrial applications,
and guidance control. He is a member of IEEE, IEEK,
and ICASE.



