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1. INTRODUCTION In this paper, we propose a non-fragile H∞ state feedback 
controller design method for singular systems and static state 
feedback controller with multiplicative uncertainty. The 
sufficient condition of controller existence, the design method 
of non-fragile H∞ controller, and the measure of non-fragility 
in controller are presented via LMI (linear matrix inequality) 
technique. The measure of non-fragility is related to the 
performance of controller gain variations. Also, through 
singular value decomposition, some changes of variables, and 
Schur complements, the sufficient condition can be rewritten 
as an LMI form in terms of transformed variables. Since the 
proposed controller design algorithm is an LMI form in terms 
of all variables, the solutions can be obtained simultaneously. 
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It is generally known that feedback system designed for 

robustness with respect to plant parameters, or designed for 
the optimization of a single performance measure, may require 
very accurate controllers. An implicit assumption that is 
inherent to those control methodologies is that the controller is 
designed to be implemented precisely. However, the controller 
implementation is subject to A/D conversion, D/A conversion, 
finite word length and round-off errors in numerical 
computations, in addition to the requirement of providing the 
practicing engineer with safe-tuning margins. Therefore, it is 
necessary that any controller should be able to tolerate some 
uncertainty in parameters. Since controller fragility is 
basically the performance deterioration of a feedback control 
system due to inaccuracies in controller implementation, 
non-fragile control problem has been important issues [1-6].  

The following notations will be used in this paper.(·)T, (·)-1, 
deg(·), det(·), and rank(·) denote the transpose, inverse, degree, 
determinant, and rank of a matrix. An identity matrix with 
proper dimensions is denoted as I. Ir, xr(t), and Rr denote an 
identity matrix with rr× dimension, 1×r  dimensional 
vector, and 1×r  dimensional real vector, respectively. * 
represents the transposed elements in the symmetric positions. 

In a recent paper, Keel et al. [1] have shown that the 
resulting controllers exhibit a poor stability margin if not 
implemented exactly. So, some researchers have developed 
non-fragile controller design algorithms [2-6]. Haddad et al. 
[2] proposed a non-fragile controller design method via 
quadratic Lyapunov bounds. And, Famularo et al. [3] 
considered LQ robust non-fragile static state feedback 
controller design method in the presence of uncertainties in 
plant and controller. However, Famularo et al. [3] did not 
obtain the value of the non-fragility directly, but predetermine 
the value of non-fragility before finding a controller. Also 
Dorato et al. [4] dealt with the problem on the design of 
non-fragile compensators via symbolic quantifier elimination. 
However, the existing works have been focused on the 
non-singular systems.  

 
2. NON-FRAGILE CONTROLLER DESIGN 

 
Consider a singular system 
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where, R∈)(tx n is the state variable, R∈)(tz l is the 
controlled output variable, R∈)(tu m is the control input 
variable, R∈)(tw p is the disturbance input variable, E is 
singular matrix with , and all matrices have 
proper dimensions. Although one finds the controller  

nrErank ≤=)(

Recently, much attention has been given to the extensions 
of the results of H∞ control theory for state-space systems to 
singular systems. State space models are very useful, but the 
state variables thus introduced do not provide a physical 
meaning. Hence, the singular form is a natural representation 
of linear dynamical systems, and makes it possible to analyze 
a larger class of systems than state space equations do [7,8], 
because state space equations cannot represent algebraic 
restrictions between state variables and some physical 
phenomena, like impulse and hysterisis which are important in 
circuit theory, cannot be treated properly. Although H∞ 
control theory in singular systems has been developed over the 
last decade, there are no papers considering non-fragile H∞ 
controller design methods for singular systems. This is the 
motivation of the proposed design algorithm.  
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The actual controller implemented is assumed as 
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where, K  is the nominal controller gain, α  is the positive 
constant, and the term  represents controller gain 
variations and  is defined as  

Kt)(Φα
)(tΦ
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 The matrix inequality (8) from the Lyapunov functional (10) 
and H∞ performance measure (6) implies  Here, the value of α  indicates the measure non-fragility 

against controller gain variations. Now, the closed loop system 
from the singular system (1) and the controller (3) is given by 
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The aim of this paper is that the closed loop system (5) is 
asymptotically stable with disturbance attenuation γ  and 
non-fragility α . Therefore, the objective is designing a 
non-fragile H∞ state feedback controller K  in the presence 
of disturbance input in the singular system and the 
multiplicative uncertainty of the controller. Here, we 
summarize some definitions and useful properties [1] for 
descriptor systems in the following. 

 
Hence, the inequality (14) implies the sufficient condition (8). 
 

However, it is not easy to solve Theorem 1, because the 
sufficient condition of (8) is not an LMI from and the equality 
condition is included in (7). In order to make a perfect LMI 
condition in terms of finding all variables and eliminate 
equality condition, the obtained sufficient conditions are 
changed in the following Theorem 2 by proper manipulations. 
Moreover, the non-fragile H∞ controller design method for 
singular systems is presented. 

 
Definition 1. For the descriptor system , if 
det(sE-A) is not identically zero, a pencil sE-A (or a pair (E,A)) 
is regular. The property of regularity guarantees the existence 
and uniqueness of solution for any specified initial condition. 
The singular system has no impulsive mode (or impulse free) 
if and only if rank(E)=degdet(sE-A). The condition of impulse 
free ensures that singular system has no infinite poles. 

)()( tAxtxE =&

 
Theorem 2. If there exist positive definite matrix , an 
invertible symmetric matrix , matrices , , , and 
positive scalar 

1Q

4Q 3Q 1Y 2Y

1β , 2β , ρ satisfying 
 
 
Theorem 1. Consider a closed loop singular system (5). If 
there exist invertible symmetric matrix P  and feedback gain 
K  satisfying 
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then, the controller (2) is a non-fragile H∞ controller 
guaranteeing the asymptotic stability in the presence of 
controller gain variations and H∞ norm bound of the closed 
loop singular systems. Here,  is defined as follows: Π

    
then the matrix expressed by 
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  (9)   is a controller gain in non-fragile H∞ controller satisfying 

asymptotic stability, regular, impulse-free, and H∞ norm 
bound in the presence of controller gain variations and 
disturbance input. Here, some notations are defined as 
follows: 

 
Proof. For asymptotic stability of closed loop singular system 
(5), if we take a Lyapunov functional  
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with , then the time derivative of (10) is given 
by 
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Proof. Using Schur complements and some changes of 
variables, the matrix inequality (8) is transformed into  
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where,  is defined Ψ
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To obtain an LMI sufficient condition in terms of finding all 
variables and eliminate the equality in (7), we make use of 
singular value decomposition and changes of variables. 
Without loss of generality, we assume that the system matrices 
of (1) have the following singular decomposition form [7]  
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where all matrices have appropriate dimensions. Also, if we 
set  
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In order to satisfy (7), if other solutions have the following 
structure 
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And we apply (17), (18), and (19) to (15), then (15) is changed 
to (13). Therefore, (13) is an LMI form in terms of all 
variables, , , , , , 1Q 3Q 4Q 1Y 2Y 1β , 2β , and ρ . 
 
Remark 1. In the case of IE = , the problem can be solved 
directly from an LMI condition in (15). Therefore, the 
proposed design algorithm can be solved in non-singular 

systems with an LMI condition. Thus, the result is general 
design method. 
 
Remark 2. (13) is an LMI form in terms of all variables, , 

, , , , 
1Q

3Q 4Q 1Y 2Y 1β , 2β , and ρ . Therefore, non-fragile 
H∞ state feedback controller can be calculated directly using 
LMI Toolbox. Also, the measure of non-fragility in controller, 
α , can be calculated by 21 ββα =  and the value of 

disturbance attenuation, ργ = .  
 
Remark 3. In order to get a minimum value of γ  or 
maximum value of α , the LMI feasibility problem in 
Theorem 2 can be reformulated. To obtain the minimum value 
of γ , the optimization problem is rewritten as 
 
Maximize ρ  subject to LMI (13). 
 
In the case of maximum value of α , the optimization 
problem is modified by 
 
Maximize 1β  subject to LMI (13). 
Minimize 2β  subject to LMI (13). 
 
However, it is difficult to obtain the value of minimum value 
of γ  and maximum value of α  at the same time. Therefore, 
one of the future researches is to develop synthesis algorithms 
which take into account certain structured uncertainties in the 
controllers and search for the best solution that guarantees a 
compromise between optimality and fragility.     
 
The proposed non-fragile H∞ controller design algorithm can 
be extended into robust and non-fragile H∞ control problem 
for singular systems with parameter uncertainties in the 
following Corollary 1.  
 
Corollary 1. Consider a parameter uncertain singular system  
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with parameter uncertainties 
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where, H  and are known matrices. This 
system (20) is stabilizable and has an H

iE )3,2,1( =i

∞ performance  
by a non-fragile H

0>γ
∞ state feedback controller if and only if 

there exist a 0>λ  such that singular systems without 
parameter uncertainties. 
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with additional disturbance input variable  and )(ˆ tw
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additional controlled output variable , is stabilizable and 
has an non-fragile H

)(ˆ tz
∞ performance  by the same state 

feedback controller. 
0>γ

3. CONCLUSION 
 

In this paper, we treated the problem of non-fragile H∞ 
state feedback controller design algorithm for singular systems 
and static state feedback controller with multiplicative 
uncertainty. The sufficient condition and non-fragile H∞ 
controller design method was discussed. Moreover, it was 
shown that the presented design algorithm can be directly 
applied to the singular systems with parameter uncertainties 
using proper manipulations. 

 
Proof. Using the existing results, it is easily proved. 
 
Therefore, the problem of robust and non-fragile H∞ control 
for uncertain singular systems can be solvable using the 
presented method.  

  
 To demonstrate the validity of the proposed method, a 

singular system is considered as follows:  
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