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H,, Control of 2-D Discrete State Delay Systems

Jianming Xu and Li Yu*

Abstract: This paper is concerned with the H,, control problem of 2-D discrete state delay
systems described by the Roesser model. The condition for the system to have a specified H.,
performance is derived via the linear matrix inequality (LMI) approach. Furthermore, a design
procedure for H. state feedback controllers is given by solving a certain LMI. The design
problem of optimal H,, controllers is formulated as a convex optimization problem, which can be
solved by existing convex optimization techniques. Simulation results are presented to illustrate

the effectiveness of the proposed results.
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1. INTRODUCTION

Over the past several decades, two-dimensional (2-
D) systems have received much interest due to their
extensive applications in several modern engineering
fields such as process control, image enhancement,
image deblurring, signal processing, etc. [1-3]. 2-D
state-space theory originated from Givone and
Roesser [4,5] who proposed the celebrated Roesser
model in the seventies of the 20th century. Since then,
other scholars have drawn several different state-space
models from their own research fields [6,7], such as
FM LSS model. A great number of fundamental
results on one-dimensional (1-D) systems have been
extended to 2-D systems [1,8]. H, control for 1-D
systems has been one of most active research areas of
control systems for the last two decades [9,10]. A
main advantage of H,, control is that its performance
specification takes account of the worst-case
performance for system in terms of the system energy
gain. This is appropriate for system robustness
analysis and robust control with modeling
uncertainties and disturbances than other performance
specifications [11], such as the LQ-optimal control
specification. The H, control problem for 2-D
systems was first addressed in [12]. Du and Xie
established several versions of 2-D bounded real
lemma [13].
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On the other hand, time-delay phenomenon often
appears in various engineering systems such as
aircraft, chemical processes and networked control
systems. It has been shown that the existences of
delays in a dynamic system may result in instability,
oscillations or performance deteriorated [14].
Therefore, the analysis and synthesis of 1-D time-
delay systems has received a great deal of attention
and has been one of the most interesting topics in the
control over the decades [15-17]. Similarly, time-
delay is often encountered in 2-D systems. However,
few results have reported in literature on 2-D time-
delay systems. Paszke ef al. presented a sufficient
stability condition and a stabilization method for
discrete linear state delay 2-D systems with FM LSS
model [18]. To the authors’ knowledge, the H,, control
problem for 2-D state delay systems has not been
investigated. We extend the bounded real lemma for
2-D systems [13] to 2-D state delay systems and
develop a design procedure for H, state feedback
controllers via the LMI approach.

In this paper, we are concerned with the H,, control
problem of 2-D state delay systems described by the
Roessor model. A sufficient condition for such a
system to have a specified H,, performance is first
presented via the LMI approach. Then a design
procedure for H,; state feedback controllers is given
by solving a certain LMI. Finally, for a class of 2-D
discrete state delay systems with norm-bounded time-
varying parameter uncertainties, the robust optimal
state feedback H,, controller is obtained using convex
optimization techniques.

2. H, PERFORMANCE ANALYSIS OF 2-D
DISCRETE STATE DELAY SYSTEMS

Consider the following 2-D discrete state delay
system in the Roesser model:
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where i and j denote integer-valued horizontal and
vertical X", /) e R™,

(i, H)eR™, u(i,j))eR™ and z(i,j)eR? denote,
respectively, the horizontal state, the vertical state, the

coordinates, respectively,

control input and the controlled output, w(i, ;) € RY
is the disturbance input which belongs to £,
{[0, ), [0, oo)} , dy and d, are constant positive
integers representing delays along horizontal direction
and vertical direction, respectively. A4, Adl, Ad27
B, B,, H, I; and L, are constant matrices with
appropriate dimensions. The initial condition is
defined as follows:

X(0)=

[’“”T (~dy, 0), x" (=d,, 1), ¥ (=d, 2),

hT hT hT
X (]_db 0)5 X (l_dl’ 1)7 X (l_db 2)9
hT hT hT
X (07 0)9 X (0’ l), X (07 2)7 o (2)
T T T
x" (0, =dy), x" (1, =dy), x' (2, -d),
T T T
X" (0,1-dy), x" (1, 1-dy), x" (2, 1-d,),

T T T
x¥ 0, 0, x’ 1,0, x¥ (2, 0), :’

For the system (1), assume a finite set of initial
condition, i.e., there exist positive integers L and M,
such that

X, j)=0, V2 M, i=—dy, ~d, +1,---, 0, 3
x'(i,j)=0, Vi=L, j=-dy, -d, +1,---, 0.

CTEUT L L _

Denote x (i,/)=[x" (i,7) x (i,j)] and X, =

sup{”x(i, j)“: i+ j=r}, we first give the definition
of asymptotic stability for the system (1).

Definition 1: The 2-D discrete state delay system

(1) is asymptotically stable if lim X, =0 with zero
r—00

input u(7, j)=0 and the initial condition (3).
Definition 2: Consider 2-D discrete state delay

system (1) with the initial condition (3). Given a

scalar ¥ >0 and symmetric positive definite weighting

matrices R, R,, S, and S, the 2-D state delay

system (1) with zero input u(i, /)=0 is said to have an
H,, performance y if it is asymptotically stable and
satisfies

2
J - 5 ||Z“2 < 72, (4)
0%(w, X (0Dt [wl, + Dy(dy, /) + Dy (irds)
where
Dl (dl ’ J)

M

-1
{x”T O DR O, N+ 3 x" (G NSy G, j)},
=0 i=—dy
D, (i, dy)
©| T L
=Z{xv (i, ORX(G, 0)+ > x" (i, ))S,x"(, j)}

i=0 Jj=d,

In the case when the initial condition is known to
be zero, ie., X(0)=0, then the H, performance

measure (4) reduces to

Jo= sup H’—z—<7. )
O#wel, "W“2

It follows from that the 2-D Parseval’s theorem [3]
that (5) is equivalent to

|GGz 2|, =  sup O G/, /)] <y, (6)

@y, €0, 2]

where o, (-) denotes the maximum singular value
of the corresponding matrix, and

G(Zl,Zz)zH(diag{Z]I Zz[nz }—A

nl’

(7
—d —d _

—[Ay 7N, Az L, D B+ L
is the transfer function from the disturbance input
w(i, j) to the controlled output z(i,j) for the 2-D

state delay system (1).

The following theorem presents a sufficient
condition for system (1) to have a specified H,,
performance.

Theorem 1: Given a positive scalar y, the 2-D state
delay system (1) with the initial condition (3) has an
H,, performance y if there exist symmetric positive
definite matrices P =diag{P,, P,} and Q =diag{Q,,

0,}, where B,, 0, e R and P,, 0, R
satisfy P, <}/2R , P <y2 , O <;/2S , and <

h h v h h v
»*S,, such that
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This implies that the whole energies stored at the
points {(i,j):i+ j=r+1} is strictly less than those
at the points {(i,j): i+ j=r} unless all x(i,/)=0.
Thus, we obtain

lim ) V(x(G, j)=0. (14)

" i+ HeD(r)
It follows that

lim V(x(G, =0, lim |xG, j)]=0,
i+ j—0

i+ j—o0

which implies from Definition 1 that the system (1) is
asymptotically stable.

To establish the H, performance of the system (1)
with the control input u(i,j)=0 for w(,j)e ¢,
{[0, o], [0, ]}, we consider

AV (x(G, D) +2 G, )z, j)— A=) w' G, )wl, J)
. ([ 4T

x(i, J) 4

h,. ; AT
i-dy, ) 4
= ! LlPl4 Ay 4y B
Xj-dy) | || 4d,

[ P+Q+H'H 0 0 H'IL,
O —
. 0, 0 0
0 0 -0, 0
. LH 0 0 LL-(-0y°1
[ xG.))

i-dy, )
x »
x'(i,j—dy)
w(i, j)

where 7 is a positive scalar.
It follows from the inequality (8) that there always
exists a positive scalar T being small enough such that

AV (x(, 1)) + 21 Gy )z, /) = (L= D)y w G, j)w, /) <O.

Therefore, for any integers p,, p; >0, we have

P P2
> 2 AV &G, )+ G =G, )
i=0 j=0 (13)
-yl G, jywl, H]<0,
where
P P2
22 AV (xG, J)
i=0 j=0

P P2 n
:ZZ[Vh(x (i+19j))+Vv(xv(i’j+l))

i=0 j=0
V(" i, ) =V, (7 G )]

P2
= 3 WG (o + L) -V (0, )]
j=0

Pi
+ > V("G py + D)=V, (x7 (G, O))]. (16)
i=0 .

Let p, > p; >max{L, M}, it follows from (12)
and the initial condition (3) that

P2 n
DV (o +1,7)
j=0

P2
<3 (" (o1 ) +V, (8 (p1, ) = Vo (¥ (P J + D)]
j=0
=V, (x"(p1, 0)+V,(x"(p, 0) =V (x"(p, py +1))
P h
S NACHIIN))
j=1
<V, (<" (py, 0)+V,(x"(py, 0) =V, (x" (1. py +1))
P72
+ 3 W (o~ L))+, (x" (P~ 1, )
j=1
~V, (" (p ~1,j+1))]
=V, (x"(p1, O)+V,(x"(py, O)+V,(x"(p, 1, 1)
+V,(x"(p =1, D))=V, (x"(py, p2 +1))

)
—V, (" (o1 =L, py D)+ X V(<" (o = 1,.)

=2
<.on < Z

WG ) +V, (G, )]
(i+/)eD(py)

)2 n Pl
+ > VGO, )= D V(i py +1)
j=p+l i=0

- 3

P
V@l 1) - SV G py + ).

(i+))eD(py) i=0
(17)
This implies
) 2%) 3 y4l v
D V(o + 1, 7))+ D V(5" (i, py +1))
j=0 i=0
< D> VG, ). (18)

(i+))eD(py)

Thus, when p,, p; = «, it follows from (14)-(18)
that
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<1 =72 Il

<Y V(" 0,0)+ Y, (G, 0))
j=0 i=0
o 4T . A ) -l [ h,. .
=Z[x 0, /)F,x"(0, j) + Z x" ()0, )]
j=0 i=——dj
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Since B, <y*Ry,, P, <y’R,, @, <y’S, and Q,

< ysz, the inequality (19) leads to
2
<1 <72k

2T L o
+2 I DR )+ Y K G S 1)]120)
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& vT . Vs ! vT .. Ve o
+ X" GORX GO+ D X" (G, ))S,x (i, )]
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Therefore, it follows from Definition 2 that system (1)
has an H,, performance y. This completes the proof. [

Remark 1: When the initial condition X(0) is
known to be zero, we need not present the weighting
matrices R, R,, S, and S, on zero boundary condition.

Therefore, the requirements for P, < yth,Pv < yZRv,

O < 728h, and Q, < ysz in Theorem 1 will become

superfluous.

Remark 2: Theorem 1 provides a sufficient
condition for the 2-D discrete state delay systems to
be bounded real in terms of a certain LMI. For the 2-D
system (1) without state delay, the LMI (8) reduces to

AT -P+H'H
. |Pl4 B+ T
B LI H

gT
T le <0,
L L -yl

which is a sufficient condition for the 2-D systems to
be bounded real in [13]. Therefore, Theorem 1 is an
extension of bounded real lemma for 2-D discrete
systems to 2-D state delay systems.

3. H, CONTROLLER DESIGN OF 2-D
DISCRETE STATE DELAY SYSTEMS

Consider the 2-D state delay system (1) and the
following controller

u(i, j) = Kx(i, j). @n
The corresponding closed-loop system is given by

h,. . hos oo
{x (l+1’1)}=(A+BzK){x (”’)}Adlxh(i—dl,j)
xX"(i,j+1) x" (i, )

+ Ag, X" (i, j — dy) + Byw(G, ),
X" (i, j)

x"(1, /)

(22)

z(i, )= (H + LZK){ } + Lw(i, j).

If there exists the controller (21) such that the closed-
loop system (22) is asymptotically stable, and the H,,
norm of the transfer function (7) from the disturbance
input w(i, j) to the controlled output z(i, j) for the
system (22) is smaller than y, then the closed-loop
system (22) has a specified H,, performance y, and the
controller (21) is said to be a y-suboptimal state
feedback H., controller for the 2-D state delay system
(1).

Theorem 2: Consider the 2-D state delay system
(1). Given a positive scalar y, if there exist a matrix N
and symmetric positive definite matrices W=diag{W,,
W,} and Y = diag{Y}, Y.} such that

[ w4y 0 0 0
0 -Y, 0 0
0 0o -, 0
0 0 0 i
AW+ BN AW, AgW, B
HW+L,N 0 0o L
wA" + NTBY wHT + NTL! ]
WAy 0
W, Ad, 0 <0.(23)
B! L
-w 0
0 -1

Then the closed-loop system (22) has a specified H.,
performance y, and

u(i, j) = NW™'x(i, ) (24)

is a y-suboptimal state feedback H,, controller for the
2-D state delay system (1).

Proof: By applying Theorem 1 and Schur
complement, a sufficient condition for the closed-loop
system (22) to have a specified H,, performance y is
that there exist symmetric positive definite matrices P
= diag{Py, P,} and Q = diag{Q,, O,} such that

(—P+Q 0 0 0

0 -0, 0 0
0 0 -0, 0
0 0 0 %

A+BK Ay A,

H+LK 0 0 I
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A" +k"Bl HT 4K}
A5 0
Ad 0 <0. (25)
Bl I
—p! 0
0 -1

Pre- and post-multiplying both sides of the inequality
(25) by diag{P™', P, I, I, I} and denoting W =
P', N=KW and Y=WQOW , it follows that the

inequality (25) is equal to the linear matrix inequality
(23). This completes this proof. O

When time-varying norm-bounded parameter
uncertainties appear in the 2-D discrete state delay
system (1), that is, the system (1) becomes

{xh("”’j )}(MM){X'@(,-,])}(A% +8dy)
* (i, j +1) )
xx"(i = dy, )+ (Ag, +Adg))x" (i, ] = dy)
+(By + AB)w(i, j) + (B2 +ABy )u(i, j)s
x" (i, /)

v

z(i, /) =(H + AH){
X1, )

}+(L1 + AL w(i, )

Ly + ALy Ju(i, J)- (26)

Suppose these uncertain matrices A4, Ad, , Ady

AB|, AB,, AH, AL, and AL, be of the following
form

[Ad Ad; A4, AB AB,]
=DIFG,)HIE, E, Ey E; Es], (27)
[AH AL, ALyJ=DyF(i,j)lE, E4 Es],

where D1, Dz, El, Ez, E3, E4, and E5 are known
constant matrices that structure the uncertainties and

F(i,j)eR™ s
satisfying

an unknown matrix function

FU (i ))F (i, ) < 1. (28)
We have the following robust /., control results.
Theorem 3: Consider the 2-D state delay system
(26) with parameter uncertainties. Given a positive
scalar yp, if there exist a matrix N and symmetric

positive definite matrices W =diag{W},, W,} and
Y =diag{Y,, ¥}, and scalar & >0 and &, >0 such
that

W +Y 0 0 0 WA" +NTB]
0 -Y, 0 0 WAy
T
0 0 -Y, 0 W, 4,
0 0 0 -ru B!
AW +B,N A, W, A4, W, B DDl -W
HW+L,N 0 0 L 0
EW +EN EW, EW, E, 0
|EW+EN 0 0 E, 0
wH + NTL} we! + NTEY wE[ + NTES
0 W,E; 0
0 W,E; 0
T T T
0 0 0
&D,D) —1 0 0
0 -&f 0
0 0 Sy
(29)
then
u(i, /)= NW (G, j) (30)

is a robust y-suboptimal state feedback H., controller
for the uncertain 2-D state delay system (26).

The proof of Theorem 3 can be carried out by using
Theorem 2, and hence it is omitted.

In addition, by solving the following optimization
problem:

min yz
W, Y, N, £1,&2

s. 1. (29),

@31

we can obtain a state feedback controller such that the
H,, disturbance attenuation y of the corresponding
closed-loop system is minimized. This controller (30)
is said to be the robust optimal H,, controller for the
uncertain 2-D discrete state delay system (26).

4. AN ILLUSTRATIVE EXAMPLE
This section gives an example to illustrate the

proposed results. Consider the following discrete 2-D
state delay system described by (26), where
[ 0.0410

021077~ [0.1453
~0.2879 -0.4593 | 9 | 0.0824

0.0880 0.3092 0.7322
Ad = ’ Bl = 5 B2 =
2 10.1867 0.2288 0.7708
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“10.0079 0.0950 ' |0.0288/

0.1838 0.2 0.2
L2 = ’ D] = ’ D2 = s
0.3157 0.2 0

[0.3043 0.0082} {0.2035}
_ =

80
> 60
20 40

w,(0.1rad/s) 00

0,(0.1rad/s)

80247

80
- 60
40

,(0.1rads)

w,(0.1rad/s) 0o

(,02(0.1 rad/s)
(c) For F(i, ))=-1.

Fig. 1. The frequency response of the disturbance
transfer function.

E =[02 04], E;=02, E;=02, E;=04,

By applying Theorem 3 and solving the
optimization problem (31), we obtain

[21518 0 06157 0
| o 3108 " | o 09183

N= [—0.3666 -0.3861],
and y=0.4993. Thus, the robust optimal H,, controller
is obtained as

u(i, j)=[-0.1704 -0.1242]x(, j). (32)

For F(i, /)=0, F(i, j))=1 and F(i, j)=-1, part (a), (b)
and (c) of Fig. 1 respectively show the frequency
response from the disturbance input w(i, j) to the
controlled output z(i, j) for the corresponding closed-

loop system over all frequencies, i.e., G(e’™, e’y

0<w <27, 0<w, <27. The maximum value of
G/, €/®?)| is 0.4401 that is below the specified
level of attenuation y=0.4993.

5. CONCLUSIONS

This paper has presented an LMI approach for the
H, control of 2-D discrete state delay systems
described by the Roesser model. The stability and H.,
disturbance attenuation condition has been developed
via the LMI approach. The design of the H,, controller
can be recast as a convex optimization with
constraints of LMI. All results can be extended to the
multiple delay case.
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