• Title/Summary/Keyword: line impedance

Search Result 938, Processing Time 0.032 seconds

Ultra-High-Speed PCB Design Methods (초고속 PCB 설계 기법)

  • Kim, Chang-Gyun;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.882-885
    • /
    • 2018
  • Recently, signal integrity on PCB (printed circuit board) becomes very important as the system operation speed increases. So far, PCB is customarily designed to minimize area and cost. However, ultra-high-speed PCB often fail to operate properly, unless it is precisely and carefully designed considering dielectric characteristics, line width, line spacing, and impedance matching. This paper surveys many problems in ultra-high-speed PCB and various design methods to mitigate them.

Modeling and simulation on an IR absorbing structure with the cascaded transmission line model (전송선 이론에 의한 적외선 흡수 구조체의 흡수율 모의시험)

  • Park, Seung-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1725-1729
    • /
    • 2013
  • In this paper, the modeling and simulation of infrared absorption in an infrared absorbing structure with the cascaded transmission line model were carried out. Each layer in the infrared absorbing structure can be modeled as a characteristic impedance of the cascaded transmission line model. The simulation results show that the cavity thickness to get a maximum absorption should be less than a quarter wavelength, which is somewhat different from prevalent thickness. It can be assured that the sheet resistance of an absorbing layer to get a maximum absorption is $377{\Omega}/{\square}$, that the thickness of the absorbing layer dose not affect the spectral characteristics of absorption. It is also shown that the thickness of the active layer is not critical to the IR absorption. It can also be assured that the validation of this modeling is proved in comparison with the previous results from similar absorbing structures.

A Study on the Estimating Locations of Faults on Distribution Power Systems (배전계통 고장위치 검출방법에 관한 연구)

  • Kim Mi-Young;Oh Yong-Taek;Rho Dae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.12
    • /
    • pp.670-677
    • /
    • 2004
  • The Conventional approach for estimating the locations of transmission line shunt faults has been to measure the apparent impedance to the fault from a line terminal and to convert the reactive component of the impedance to line length. But, these methods do not adequately address the problems associated with the fault location on distribution systems. This thesis presents a technique that estimates the location of shunt fault on a radial distribution system that has several single and multiphase laterals. Tapped loads and non-homogenity of the distribution system are take into account. The developed technique, which can handle shunt faults was tested to evaluate its suitability. Results from computer simulation of faults on a model of a 25KV distribution lines like real system are presented. The results approved that the proposed technique works well for estimating the locations of the distribution line shunt faults.

Characteristic Impedances in Low-Voltage Distribution Systems for Power Line Communication

  • Kim, Young-Sung;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.29-34
    • /
    • 2007
  • The input and output impedances in a low voltage distribution system is one of the most important matters for power line communication because from the viewpoint of communication, the attenuation characteristic of the high frequency signals is greatly caused by impedance mismatch during sending and receiving. The frequency range is from 1MHz to 30MHz. Therefore, this paper investigates the input and output impedances in order to understand the characteristic of high frequency signals in the low voltage distribution system between a pole transformer and an end user. For power line communication, the model of Korea's low voltage distribution system is proposed in a residential area and then the low voltage distribution system is set up in a laboratory. In the low voltage distribution system, S parameters are measured by using a network analyzer. Finally, input and output impedances are calculated using S parameters.

Design of a Modified Half Wavelength Loaded Line Antenna Controllable Resonant Frequency and Input Impedance (공진 주파수와 입력 임피던스를 조절할 수 있는 변형된 반파장 로디드 라인 안테나 설계)

  • Jung Woo-Jae;Jung Byungwoon;Kang Gi-Cho;Park Myun-Joo;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.973-981
    • /
    • 2005
  • A modified half wavelength loaded line antenna is designed and implemented for mobile terminal applications. The antenna is constructed with a radiating element of half wavelength loaded line structure, dielectric substrate, feeding post and two shorting posts on the experimental PCB. The shorting posts are located at each side of the radiating element and lumped inductance elements are on between each shorting post and ground of PCB. By controlling value of inductors, one can adjust resonant frequency and input impedance respectively. Within inductance value of 12 nH, the antenna can have wide operating range of $1,470\~2,660\;MHz$ and good impedance matching. The measured peak gains are between -0.45 dBi and 2.03 dBi for the operating band.

A Study on the Establishment of Impedance/Conductance Guide Line for Diagnosis of Lead-Acid Battery's State of Health(SOH) (납축전지 건전상태 진단을 위한 기준 임피던스/컨덕턴스 설정에 관한 연구)

  • Kim, Chong-Min;Bang, Sun-Bae;Shong, Kil- Mok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.214-220
    • /
    • 2009
  • Battery is one of the emergency power and its reliability is a very important to keep up the minimum of building capabilities in case of interruption of electric power. This paper, a comparison was made between three different types of instrument on 30 valve regulated lead acid(VRLA) TYPE 12[V]/100[AH] batteries, and then their indicated measured values(impedance/conductance) were compared with the measured capacity of the battery. As a result, Measured value of instrument is strongly related to battery's capacity in the same group battery and Impedance/Conductance guide line for diagnosis of lead-acid battery's state of health(SOH) is a different from each battery guoup.

Relative Measurement of Differential Electrode Impedance for Contact Monitoring in a Biopotential Amplifier

  • Yoo, Sun-K.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.601-605
    • /
    • 2007
  • In this paper, we propose a simple and relative electrode contact monitoring method. By exploiting the power line interference, which is regarded as one of the worst noise sources for bio-potential measurement, the relative difference in electrode impedance can be measured without a current or voltage source. Substantial benefits, including no extra circuit components, no degradation of the body potential driving circuit, and no electrical safety problem, can be achieved using this method. Furthermore, this method can be applied to multi-channel isolated bio-potential measurement systems and home health care devices under a steady measuring environment.

A Study on the Algorithm for Fault Discrimination in Transmission Lines using Neural Network and the Variation of Fault Currents (신경회로망과 고장전류의 변화를 이용한 고장판별 알고리즘에 관한 연구)

  • Yeo, Sang-Min;Kim, Cheol-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.8
    • /
    • pp.405-411
    • /
    • 2000
  • When faults occur in transmission lines, the classification of faults is very important. If the fault is HIF(High Impedance Fault), it cannot be detected or removed by conventional overcurrent relays (OCRs), and results in fire hazards and causes damages in electrical equipment or personal threat. The fast discrimination of fault needs to effective protection and treatment and is important problem for power system protection. This paper propolsed the fault detection and discrimination algorithm for LIFs(Low Impedance Faults) and HIFs(High Impedance Faults). This algorithm uses artificial neural networks and variation of 3-phase maximum currents per period while faults. A double lines-to-ground and line-to-line faults can be detected using Neural Network. Also, the other faults can be detected using the value of variation of maximum current. Test results show that the proposed algorithms discriminate LIFs and HIFs accurately within a half cycle.

  • PDF

Design of a new compact microstrip line duplexer using stepped impedance resonator (계단형 임피던스 공진기를 이용한 새로운 구조의 소형화된 마이크로스트립 듀플렉서 설계)

  • Kim, Sang-Bong;Lee, Yun-Gyeong;Im, Hyeon-Jun;Yun, Hyeon-Bo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.150-154
    • /
    • 2003
  • In this letter, a novel compact duplexer which consists of Tx and Rx Filter using microstrip line ${\lambda}/4$ resonators with a pair of tap-connected open-ended stepped impedance stubs is designed. The tapped open stubs not only work as K-inverters but also introduce attenuation poles, attenuation poles are located at upper and lower side of the passband by adjusting the open stub length and width. The result of measurement duplexer has been yielded better isolation and sharper skirt behavior than that with a conventional bandpass filter and similar to those of simulation results.

  • PDF

A New Algorithm to Reduce the Mal-Operation of DOCR in Bi-directional Power Distribution Systems

  • Jang, Su-Hyeong;Oh, Joon-Seok;Jeong, Ui-Yong;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.585-591
    • /
    • 2016
  • DOCR can be used to efficiently increase the reliability and to protect the bi-directional D/L(Distribution Lines). As more DG(Distributed Generation)s attempt to connect the bi-directional D/L, there is an increasing need for studies of how to use DOCR installed in the D/L. This paper investigates the operating principles of DOCR and presents the results an effect of sequence and fault impedance in L-L(Line to Line) fault. An advanced DOCR operating algorithm is proposed to reduce the mal-operation of conventional DOCR. The proposed algorithm is applied to the bi-directional power flow system and shows that it decreases the mal-operation of DOCR through the computer simulation.