A Study on the Algorithm for Fault Discrimination in Transmission Lines using Neural Network and the Variation of Fault Currents

신경회로망과 고장전류의 변화를 이용한 고장판별 알고리즘에 관한 연구

  • 여상민 (성균관대 전기전자 및 컴퓨터공학부) ;
  • 김철환 (성균관대 전기전자 및 컴퓨터공학부·)
  • Published : 2000.08.01

Abstract

When faults occur in transmission lines, the classification of faults is very important. If the fault is HIF(High Impedance Fault), it cannot be detected or removed by conventional overcurrent relays (OCRs), and results in fire hazards and causes damages in electrical equipment or personal threat. The fast discrimination of fault needs to effective protection and treatment and is important problem for power system protection. This paper propolsed the fault detection and discrimination algorithm for LIFs(Low Impedance Faults) and HIFs(High Impedance Faults). This algorithm uses artificial neural networks and variation of 3-phase maximum currents per period while faults. A double lines-to-ground and line-to-line faults can be detected using Neural Network. Also, the other faults can be detected using the value of variation of maximum current. Test results show that the proposed algorithms discriminate LIFs and HIFs accurately within a half cycle.

Keywords

References

  1. C.H. Kim, R. K. Aggarwal, A. T. Johns, 'Digital Simulation of the Fault Transient Phenomena on EHV Transmission Lines Under Non-Linear High Impedance Arcing Faults', IPST '99-International Conference on Power Systems Transients, pp. 164-168, June 20-24, 1999, Budapest-Hungary
  2. D. S. Fitton, R. W. Dunn, R. K. Aggarwal, A. T. Johns, A. Bennett, 'Design and Implementation of an Adaptive Single Pole Autoreclosure Technique for Transmission Lines using Artificial Neural Networks', IEEE Transaction on Power Delivery, Vol. 11, No. 2, pp. 748-755, April, 1996 https://doi.org/10.1109/61.489331
  3. 한국전력공사, 전력연구원 '직접접지계통 송지선로 고저항 지락보호대책 연구', 최종보고서, 1997년 7월
  4. S. H. Kang, S. B. Cho, C. G. Kim, '고조파 분석을 이용한 고저항 지락사고 검출에 관한 연구', 성균관대학교 논문집, 과학기술편, 제 50호, No. 1, pp. 159-171, 1999
  5. Huisheng Wang, W. W. L. Keerthipala, 'Fuzzy-Neuro Approach to Fault Classification for Transmission Line Protection', IEEE Transactions on Power Delivery, Vol. 13, No. 4, pp. 1093-1104, October, 1998 https://doi.org/10.1109/61.714467
  6. K. B. Cho, J. B. kim, E. B. Shim, J. W. Park, 'Development of an Intelligent Autoreclosing Concept Using Neuro-Fuzzy Technique - An Optimal Controlled Switching for Power System Operation-', CIGRE, 13-114, 1998
  7. M. M. Eissa, 'Combination of Digital Protective Relaying Schemes and Automatic Reclosing for EHV/UHV Lines', Stockholm Power Tech - Information and Control Systems, June 18-22, 1995
  8. Mike Aucoin, 'Status of High Impedance Fault Detection', IEEE Transactions on Power Apparatus and Systems, Vol. PAS-104, No. 3, pp. 638-643, March, 1985 https://doi.org/10.1109/TPAS.1985.318999
  9. B. Mike Aucoin, B. Don Russell, 'Distribution High Impedance Fault Detection utilizing High frequency Current Compenent', IEEE Transaction on Power Apparatus and System, Vol. PAS-101, No. 6, pp. 1596-1606, June, 1982 https://doi.org/10.1109/TPAS.1982.317209
  10. 최해술, '신경회로망을 이용한 고저항지락사고 검출에 관한 연구', 성균관대학교 석사학위논문, 1997년 2월
  11. Tomas Dalstein, Bernd Kuliche, 'Neural Network Approach to Fault Classification for the High speed Protective Relays', IEEE Trans. on PWRD, Vol.10, No.2, pp.1002-1011, April, 1995 https://doi.org/10.1109/61.400828
  12. A.F.Sultan, G.W.Swift and D.J.Fedirchuk, 'Detection of High Impedance Arcing Faults Using a Multi-Layer Perceptron', IEEE Trans. on Power Delivery, Vol.7, No.4, pp. 1871-1877, October, 1992 https://doi.org/10.1109/61.156989
  13. C. H. Kim, et al., 'A Study on the Detection of High Impedance Fault using Neural Network', Trans. of KIEE, Vol. 47, No.7, pp. 875-879, 1998
  14. C. H. Kim, et al., 'A Study on the Selection of Mother Wavelet for Fault Detection in Transmission Lines', Trans. of KIEE, Vol. 47, No. 9, pp. 1277-1282, 1998
  15. C. H. Kim, et al., 'Simulation of High Impedance Arching Fault using EMTP', Trans, of KIEE, Vol. 46, No. 10, pp. 1450-1453, 1997
  16. C. H. Kim, et al., 'A Study on the Detection of High Impedance Fault using the Neural Network', International Conference on Electrical Engineering, Vol. 2, No. 2, pp. 205-208, 1998