• Title/Summary/Keyword: light emitting transistor

Search Result 81, Processing Time 0.026 seconds

산화아연 나노로드기반 광검출소자 제작 및 특성

  • Go, Yeong-Hwan;Jeong, Gwan-Su;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.189.2-189.2
    • /
    • 2013
  • 1차원 산화아연 나노구조물은 광대역 에너지 밴드갭(~3.3 eV)과 독특한 물리적 특성을 갖고 있어, 전계효과 트랜지스터(field effect transistor), 발광다이오드(light emitting diode), 자외선 광검출기 (ultraviolet photodetector) 및 태양전지(photovoltaic cell)에 널리 이용되고 있다. 특히, 1차원 산화아연 나노구조물은 직접천이형 에너지 밴드갭(direct bandgap)을 갖고 있으며, 빛으로부터 여기된 전자가 1차원 나노구조물을 통해 향상된 이동경로를 제공할 수 있어서 차세대 자외선 광검출기 응용에 대한 연구가 활발히 진행되고 있다. 한편, 수열합성법(hydrothermal method)을 통해서 1차원 산화아연 나노구조물을 비교적 간단하고 저온공정을 통해서 합성할 수 있는데, 이를 광검출기 소자구조에 응용에서 양전극에 연결하기 위해서는 복잡하고 정교한 공정이 필요하다. 이에 본 연구에서는 수열합성법을 통해 합성된 산화아연 나노로드가 포함된 에탄올 용액을 금(Au) 패턴에 drop-casting을 통해서 간단한 방법으로 metal-semiconductor-metal (MSM) 광검출기를 제작하여 광반응 특성을 분석하였다. 또한 염료를 통해 가시광을 흡수하여 광전류(photocurrent)를 발생시킬 수 있도록 염료를 흡착한 산화아연 나노로드를 이용하여 같은 구조의 MSM 광검출기를 제작하여 가시광에 대한 광반응 특성을 관찰하였다.

  • PDF

A Method for Improving Resolution and Critical Dimension Measurement of an Organic Layer Using Deep Learning Superresolution

  • Kim, Sangyun;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.153-164
    • /
    • 2018
  • In semiconductor manufacturing, critical dimensions indicate the features of patterns formed by the semiconductor process. The purpose of measuring critical dimensions is to confirm whether patterns are made as intended. The deposition process for an organic light emitting diode (OLED) forms a luminous organic layer on the thin-film transistor electrode. The position of this organic layer greatly affects the luminescent performance of an OLED. Thus, a system for measuring the position of the organic layer from outside of the vacuum chamber in real-time is desired for monitoring the deposition process. Typically, imaging from large stand-off distances results in low spatial resolution because of diffraction blur, and it is difficult to attain an adequate industrial-level measurement. The proposed method offers a new superresolution single-image using a conversion formula between two different optical systems obtained by a deep learning technique. This formula converts an image measured at long distance and with low-resolution optics into one image as if it were measured with high-resolution optics. The performance of this method is evaluated with various samples in terms of spatial resolution and measurement performance.

A Review : Improvement of Operation Current for Realization of High Mobility Oxide Semiconductor Thin-film Transistors (고이동도 산화물 반도체 박막 트랜지스터 구현을 위한 구동전류 향상)

  • Jang, Kyungsoo;Raja, Jayapal;Kim, Taeyong;Kang, Seungmin;Lee, Sojin;Nguyen, Thi Cam Phu;Than, Thuy Trinh;Lee, Youn-Jung;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.351-359
    • /
    • 2015
  • Next-generation displays should be transparent and flexible as well as having high resolution and frame number. The main factor for active matrix organic light emitting diode and next-generation displays is the development of TFTs (thin-film transistors) with high mobility and large area uniformity. The TFTs used for transparent displays are mainly oxide TFT that has oxide semiconductor as channel layer. Zinc-oxide based substances such as indium-gallium-zinc-oxide has attracted attention in the display industry. In this paper, the mobility improvement of low cost oxide TFT is studied for fast operating next-generation displays by overcoming disadvantages of amorphous silicon TFT that has low mobility and poly silicon TFT that requires expensive equipment for complex process and doping process.

TRIZ-based Improvement of Glass Thermal Deformation in OLED Deposition Process (트리즈 기반 OLED 증착 공정의 글래스 열 변형 개선)

  • Lee, Woo-Sung;Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.114-123
    • /
    • 2017
  • The global small and mid-sized display market is changing from thin film transistor-liquid crystal display to organic light emitting diode (OLED). Reflecting these market conditions, the domestic and overseas display panel industry is making great effort to innovate OLED technology and incease productivity. However, current OLED production technology has not been able to satisfy the quality requirement levels by customers, as the market demand for OLED is becoming more and more diversified. In addition, as OLED panel production technology levels to satisfy customers' requirement become higher, product quality problems are persistently generated in OLED deposition process. These problems not only decrease the production yield but also cause a second problem of deteriorating productivity. Based on these observations, in this study, we suggest TRIZ-based improvement of defects caused by glass pixel position deformation, which is one of quality deterioration problems in small and medium OLED deposition process. Specifically, we derive various factors affecting the glass pixel position shift by using cause and effect diagram and identify radical reasons by using XY-matrix. As a result, it is confirmed that glass heat distortion due to the high temperature of the OLED deposition process is the most influential factor in the glass pixel position shift. In order to solve the identified factors, we analyzed the cause and mechanism of glass thermal deformation. We suggest an efficient method to minimize glass thermal deformation by applying the improvement plan of facilities using contradiction matrix in TRIZ. We show that the suggested method can decrease the glass temperature change by about 23% through an experiment.

Structural Evolution of ZnO:Ga Thin Film on Profiled Substrate Grown by Radio Frequency Sputtering

  • Sun, J.H.;Kim, J.H.;Ahn, B.G.;Park, S.Y.;Jung, E.J.;Lee, J.H.;Kang, H.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.72-72
    • /
    • 2011
  • Recently, Zinc oxide (ZnO) nano-structures have been received attractive attention because of their outstanding optical and electrical properties. It might be a promising material considered for applications to photonic and electronic devices such as ultraviolet light emitting diode, thin film transistor, and gas sensors. ZnO nano-structures can be typically synthesized by the VLS growth mode and self-assembly. In the VLS growth mode using various growth techniques, the noble metal catalysts such as Au and Sn were used. However, the growth of ZnO nano-structures on nano-crystalline Au seeds using radio frequency (RF) magnetron sputtering might be explained by the profile coating, i.e. the ZnO nano-structures were a morphological replica of Au seeds. Ga doped ZnO (ZnO:Ga) nano-structures using this concept were synthesized and characterized by XRD, AFM, SEM, and TEM. We found that surface morphology is drastically changed from initial islands to later sun-flower typed nano-structures. We will present the structural evolution of ZnO:Ga nano-structures with increasing the film thickness.

  • PDF

Improvement in the negative bias stability on the water vapor permeation barriers on Hf doped $SnO_x$ thin film transistors

  • Han, Dong-Seok;Mun, Dae-Yong;Park, Jae-Hyeong;Gang, Yu-Jin;Yun, Don-Gyu;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.110.1-110.1
    • /
    • 2012
  • Recently, advances in ZnO based oxide semiconductor materials have accelerated the development of thin-film transistors (TFTs), which are the building blocks for active matrix flat-panel displays including liquid crystal displays (LCD) and organic light-emitting diodes (OLED). However, the electrical performances of oxide semiconductors are significantly affected by interactions with the ambient atmosphere. Jeong et al. reported that the channel of the IGZO-TFT is very sensitive to water vapor adsorption. Thus, water vapor passivation layers are necessary for long-term current stability in the operation of the oxide-based TFTs. In the present work, $Al_2O_3$ and $TiO_2$ thin films were deposited on poly ether sulfon (PES) and $SnO_x$-based TFTs by electron cyclotron resonance atomic layer deposition (ECR-ALD). And enhancing the WVTR (water vapor transmission rate) characteristics, barrier layer structure was modified to $Al_2O_3/TiO_2$ layered structure. For example, $Al_2O_3$, $TiO_2$ single layer, $Al_2O_3/TiO_2$ double layer and $Al_2O_3/TiO_2/Al_2O_3/TiO_2$ multilayer were studied for enhancement of water vapor barrier properties. After thin film water vapor barrier deposited on PES substrate and $SnO_x$-based TFT, thin film permeation characteristics were three orders of magnitude smaller than that without water vapor barrier layer of PES substrate, stability of $SnO_x$-based TFT devices were significantly improved. Therefore, the results indicate that $Al_2O_3/TiO_2$ water vapor barrier layers are highly proper for use as a passivation layer in $SnO_x$-based TFT devices.

  • PDF

Effects on the Al2O3 Thin Film by the Ar Pulse Time in the Atomic Layer Deposition (원자층 증착에 있어서 아르곤 펄스 시간이 Al2O3 박막에 미치는 효과)

  • Kim, Ki Rak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.157-160
    • /
    • 2021
  • As an insulator for a thin film transistor(TFT) and an encapsulation material of organic light emitting diode(OLED), aluminum oxide (Al2O3) has been widely studied using several technologies. Especially, in spite of low deposition rate, atomic layer deposition (ALD) has been used as a process method of Al2O3 because of its low process temperature and self-limiting reaction. In the Al2O3 deposition by ALD method, Ar Purge had some crucial effects on the film properties. After reaction gas is injected as a formation of pulse, an inert argon(Ar) purge gas is injected for gas desorption. Therefore, the process parameter of Ar purge gas has an influence on the ALD deposited film quality. In this study, Al2O3 was deposited on glass substrate at a different Ar purge time and its structural characteristics were investigated and analyzed. From the results, the growth rate of Al2O3 was decreased as the Ar purge time increases. The surface roughness was also reduced with increasing Ar purge time. In order to obtain the high quality Al2O3 film, it was known that Ar purge times longer than 15 sec was necessary resulting in the self-limiting reaction.

High Performance Flexible Inorganic Electronic Systems

  • Park, Gwi-Il;Lee, Geon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

Integration of the 4.5

  • Lee, Sang-Yun;Koo, Bon-Won;Jeong, Eun-Jeong;Lee, Eun-Kyung;Kim, Sang-Yeol;Kim, Jung-Woo;Lee, Ho-Nyeon;Ko, Ick-Hwan;Lee, Young-Gu;Chun, Young-Tea;Park, Jun-Yong;Lee, Sung-Hoon;Song, In-Sung;Seo, O-Gweon;Hwang, Eok-Chae;Kang, Sung-Kee;Pu, Lyoung-Son;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.537-539
    • /
    • 2006
  • We developed an 4.5" $192{\times}64$ active matrix organic light-emitting diode display on a glass using organic thin-film transistor (OTFT) switching-arrays with two transistors and a capacitor in each sub-pixel. The OTFTs has bottom contact structure with a unique gate insulator and pentacene for the active layer. The width and length of the switching OTFT is $800{\mu}m$ and $10{\mu}m$ respectively and the driving OTFT has $1200{\mu}m$ channel width with the same channel length. On/off ratio, mobility, on-current of switching OTFT and on-current of driving OTFT were $10^6,0.3{\sim}0.5\;cm^2/V{\cdot}sec$, order of 10 ${\mu}A$ and over 100 ${\mu}A$, respectively. AMOLEDs composed of the OTFT switching arrays and OLEDs made using vacuum deposition method were fabricated and driven to make moving images, successfully.

  • PDF

The Fabrication of OTFT-OLED Array Using Ag-paste for Source and Drain Electrode (Ag 페이스트를 소스와 드레인 전극으로 사용한 OTFT-OLED 어레이 제작)

  • Ryu, Gi-Seong;Kim, Young-Bae;Song, Chung-Kun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.12-18
    • /
    • 2008
  • Ag paste was employed for source and drain electrode of OTFTs and for the data metal lines of OTFT-OLED array on PC(polycarbonate) substrate. We tested two kinds of Ag-pastes such as pastes for 325 mesh and 500 mesh screen mask to examine the pattern ability and electrical performance for OTFTs. The minimum feature size was 60 ${\mu}m$ for 325 mesh screen mask and 40 ${\mu}m$ for 500 mesh screen mask. The conductivity was 60 $m{\Omega}/\square$ for 325 mesh and 133.1 $m{\Omega}/\square$ for 500 mesh. For the OTFT performance the mobility was 0.35 $cm^2/V{\cdot}sec$ and 0.12 $cm^2/V{\cdot}sec$, threshold voltage was -4.7 V and 0.9 V, respectively, and on/off current ratio was ${\sim}10^5$, for both screen masks. We applied the 500 mash Ag paste to OTFT-OLED array because of its good patterning property. The pixel was composed of two OTFTs and one capacitor and one OLED in the area of $2mm{\times}2mm$. The panel successfully worked in active mode operation even though there were a few bad pixels.