DOI QR코드

DOI QR Code

A Review : Improvement of Operation Current for Realization of High Mobility Oxide Semiconductor Thin-film Transistors

고이동도 산화물 반도체 박막 트랜지스터 구현을 위한 구동전류 향상

  • Jang, Kyungsoo (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Raja, Jayapal (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Taeyong (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kang, Seungmin (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, Sojin (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Nguyen, Thi Cam Phu (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Than, Thuy Trinh (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, Youn-Jung (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • 장경수 (성균관대학교 정보통신대학) ;
  • ;
  • 김태용 (성균관대학교 정보통신대학) ;
  • 강승민 (성균관대학교 정보통신대학) ;
  • 이소진 (성균관대학교 정보통신대학) ;
  • ;
  • ;
  • 이윤정 (성균관대학교 정보통신대학) ;
  • 이준신 (성균관대학교 정보통신대학)
  • Received : 2015.05.19
  • Accepted : 2015.05.24
  • Published : 2015.06.01

Abstract

Next-generation displays should be transparent and flexible as well as having high resolution and frame number. The main factor for active matrix organic light emitting diode and next-generation displays is the development of TFTs (thin-film transistors) with high mobility and large area uniformity. The TFTs used for transparent displays are mainly oxide TFT that has oxide semiconductor as channel layer. Zinc-oxide based substances such as indium-gallium-zinc-oxide has attracted attention in the display industry. In this paper, the mobility improvement of low cost oxide TFT is studied for fast operating next-generation displays by overcoming disadvantages of amorphous silicon TFT that has low mobility and poly silicon TFT that requires expensive equipment for complex process and doping process.

Keywords

References

  1. T. Kamiya, K. Nomura, H. Hosono, Sci. Technol. Adv. Mater., 11, 044305 (2010). https://doi.org/10.1088/1468-6996/11/4/044305
  2. T. Arai, J. Soc. Inf. Display, 20, 156 (2012). https://doi.org/10.1889/JSID20.3.156
  3. R. Martins, E. Fortunato, P. Barquinha, Transparent Oxide Electronics: From Materials to Devices (John Wiley and Sons, Chichester, UK, 2012).
  4. J. Wagner, D. Keszler, R. Presley, Transparent electronics, (Springer, New York, USA, 2008).
  5. J. F. Wagner, Science, 300, 1245 (2003). https://doi.org/10.1126/science.1085276
  6. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). https://doi.org/10.1038/nature03090
  7. E. Fukumoto, T. Arai, N. Morosawa, K. Tojunaga, Y. Terai, T. Fujimori, and T. Sasaoka, J. Soc. Inf. Display, 19, 867 (2011). https://doi.org/10.1889/JSID19.12.867
  8. E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins, Adv. Mater., 17, 590 (2005). https://doi.org/10.1002/adma.200400368
  9. H. Hosono, J. Non-Cryst. Solids, 352, 851 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.01.073
  10. S. Lee, B. Bierig, and D. Paine, Thin Solid Films, 520, 3764 (2012). https://doi.org/10.1016/j.tsf.2011.06.082
  11. J. Park, H. Lee, and S. Im, ACS Appl. Mater. Interfaces, 5, 6990 (2013). https://doi.org/10.1021/am401128p
  12. Y. Song, R. Xu, J. He, S. Siontas, A. Zaslavsky, and D. Paine, IEEE Electron Dev. Lett., 35, 1251 (2014). https://doi.org/10.1109/LED.2014.2360922
  13. H. Kim, J. Park, H. Jeong, K. Son, T. Kim, J. Seon, E. Lee, J. Chung, D. Kim, M. Ryu, and S. Lee, ACS Appl. Mater. Interfaces, 4, 5416 (2012). https://doi.org/10.1021/am301342x
  14. S. Lee, H. Park, and D. Paine, Thin Solid Films, 520, 3769 (2012). https://doi.org/10.1016/j.tsf.2011.11.067
  15. S. Tomai, M. Nishimura, M. Itose, M. Matuura, M. Kasami, S. Matuura, H. Kawashima, F. Utsuno, and K. Yano, Jpn. J. Appl. Phys., 51, 03CB01 (2012). https://doi.org/10.7567/JJAP.51.03CB01
  16. K. Jang, J. Raja, Y. Lee, D. Kim, and J. Yi, IEEE Electron Dev. Lett., 34, 1151 (2013). https://doi.org/10.1109/LED.2013.2272084
  17. C. Fuh, P. Liu, W. Huang, and S. Sze, IEEE Electron Dev. Lett., 33, 1103 (2014).
  18. J. Jia, Y. Torigoshi, E. Kawashima, F. Utsuno, K. Yano, and Y. Shigesato, Appl. Phys. Lett., 106, 023502 (2015). https://doi.org/10.1063/1.4905654
  19. H. Tan, G. Liu, A. Liu, B. Shin, and F. Shan, Ceram. Int. (In press).
  20. S. Parthiban, S. Kim, and J. Kwon, IEEE Electron Dev. Lett., 35, 1028 (2014). https://doi.org/10.1109/LED.2014.2345740
  21. S. Yang, D. Cho, M. Ryu, S. Park, C. Hwang, J. Jang, and J. Jeong, IEEE Electron Dev. Lett., 31, 144 (2010). https://doi.org/10.1109/LED.2009.2036944
  22. Y. Chen, X. Cai, Z. Ye, X. Wang, B. Zhang, and H. Wu, J. Electron. Mater., 42, 2459 (2013). https://doi.org/10.1007/s11664-013-2589-9
  23. Y. Chen, X. Wang, X. Cai, Z. Yuan, X. Zhu, D. Qiu, and H. Wu, Chin. Phys. B, 23, 026101 (2014). https://doi.org/10.1088/1674-1056/23/2/026101
  24. J. Cai, D. Han, Y. Geng, W. Wang, L. Wang, S. Zhang, and Y. Wang, IEEE Trans. Electron Dev., 60, 2431 (2013).
  25. Z. Ye and M. Wong, IEEE Electron Dev. Lett., 33, 549 (2012). https://doi.org/10.1109/LED.2012.2183672
  26. D. Cho, S. Park, S. Yang, C. Byun, M. Ryu, J. Lee, C. Hwang, S. Yoon, H. Chu, and K. Cho, IEICE Trans. Electron., E92-C, 1340 (2009). https://doi.org/10.1587/transele.E92.C.1340
  27. L. Zhang, H. Zhang, Y. Bai, J. Ma, J. Cao, X. Jiang, and Z. Zhang, Solid State Commun., 146, 387 (2008). https://doi.org/10.1016/j.ssc.2008.03.036
  28. L. Zhang, J. Li, X. Zhang, D. Yu, H. Lin, K. Haq, X. Jiang, and Z. Zhang, Superlattice. Microst., 48, 198 (2010). https://doi.org/10.1016/j.spmi.2010.06.001
  29. K. Remashan, D. Hwang, S. Park, and J. Jang, IEEE Trans. Electron Dev., 55, 2736 (2008). https://doi.org/10.1109/TED.2008.2003021
  30. M. Surabi, J. Chandradass, and S. Park, Mater. Manuf. Process., 30, 175 (2015). https://doi.org/10.1080/10426914.2014.892973
  31. L. Lu, J. Li, and M. Wong, IEEE Electron Dev. Lett., 35, 841 (2014). https://doi.org/10.1109/LED.2014.2326960
  32. C. Brox-Nilsen, J. Jin, Y. Luo, P. Bao, and A. Song, IEEE Trans. Electron Dev., 60, 3424 (2013). https://doi.org/10.1109/TED.2013.2279401
  33. L. Zhang, J. Li, X. Zhang, D. Yu, X. Jiang, and Z. Zhang, Phys. Status Solidi A, 207, 1815 (2010). https://doi.org/10.1002/pssa.200925440
  34. Dhananjay and S. Krupanidhi, J. Appl. Phys., 101, 123717 (2007). https://doi.org/10.1063/1.2748863
  35. J. Park, C. Kim, S. Kim, I. Song, S. Kim, D. Kang, H. Lim, H. Yin, R. Jung, E. Lee, J. Lee, K. Kwon, and Y. Park, IEEE Electron Dev. Lett., 29, 879 (2008). https://doi.org/10.1109/LED.2008.2000815
  36. J. Jeong, H. Chung, Y. Mo, and H. Kim, J. Electrochem. Soc., 155, H873 (2008). https://doi.org/10.1149/1.2972031
  37. A. Sato, M. Shimada, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films, 518, 1309 (2009). https://doi.org/10.1016/j.tsf.2009.01.165
  38. K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, Jpn. J. Appl. Phys., 48, 010203 (2009). https://doi.org/10.1143/JJAP.48.010203
  39. L. Lan and J. Peng, IEEE Trans. Electron Dev., 58, 1452 (2011). https://doi.org/10.1109/TED.2011.2115248
  40. S. Yang, J. Bak, S. Yoon, M. Ryu, H, Oh, C. Hwang, G. Kim, S. Park, and J. Jang, IEEE Electron Dev. Lett., 32, 1692 (2011). https://doi.org/10.1109/LED.2011.2167122
  41. C. Chiu, S. Chang, and S. Chang, IEEE Electron Dev. Lett., 31, 1245 (2010).
  42. H. Hsu, C. Chang, C. Cheng, P. Chen, Y. Chiu, P. Chiou, and C. Cheng, J. Display Technol., 10, 875 (2014). https://doi.org/10.1109/JDT.2014.2331351
  43. J. Lee, S. Chang, S. Koo, and S. Lee, IEEE Electron Dev. Lett., 31, 225 (2010). https://doi.org/10.1109/LED.2009.2038806
  44. L. Qian, X. Liu, C. Han, and P. Lai, IEEE Trans. Dev. Mater. Reliab., 14, 1056 (2014). https://doi.org/10.1109/TDMR.2014.2365702
  45. N. Su, S. Wang, and A. Chin, IEEE Electron Dev. Lett., 30, 1317 (2009). https://doi.org/10.1109/LED.2009.2033392
  46. L. Qian and P. Lai, IEEE Trans. Dev. Mater. Reliab., 14, 177 (2014). https://doi.org/10.1109/TDMR.2013.2275191
  47. T. Pan, C. Chen, F. Chen, Y. Huang, and J. Her, J. Display Technol., 11, 248 (2015). https://doi.org/10.1109/JDT.2014.2380453
  48. T. Pan, C. Chen, and J. Liu, RCS Advances, 4, 29300 (2014).
  49. T. Pan, C. Chen, J. Liu, J. Her, and K. Koyama, IEEE Electron Dev. Lett., 35, 66 (2014). https://doi.org/10.1109/LED.2013.2287349
  50. T. Pan, C. Chen, J. Her, and K. Koyama, J. Appl. Phys., 116, 194510 (2014). https://doi.org/10.1063/1.4902518
  51. T. Pan, C. Chen, J. Liu, F. Chen, J. Her, and K. Koyama, IEEE Trans. Electron Dev., 61, 87 (2014). https://doi.org/10.1109/TED.2013.2291377
  52. G. Geng, G. Liu, F. Shan, A. Liu, Q. Zhang, W. Lee, B. Shin, and H. Wu, Curr. Appl. Phys., 14, 52 (2014).
  53. H. Hsu, C. Chang, and C. Cheng, IEEE Electron Dev. Lett., 34, 768 (2013). https://doi.org/10.1109/LED.2013.2258455
  54. S. Jeon, S. Kim, S. Park, I. Song, J. Park, S. Kim, and C. Kim, IEEE Electron Dev. Lett., 31, 1128 (2010). https://doi.org/10.1109/LED.2010.2059694
  55. J. Park and H. Lee, IEEE Electron Dev. Lett., 33, 818 (2012). https://doi.org/10.1109/LED.2012.2190036
  56. M. Kim and D. Choi, Microelectron. Reliab., 52, 1346 (2012). https://doi.org/10.1016/j.microrel.2012.02.012
  57. Y. Tian, D. Han, S. Zhang, F. Huang, D. Shan, Y. Cong, J. Cai, L. Wang, S. Zhang, X. Zhang, and Y. Wang, Jpn. J. Appl. Phys., 53, 04EF07 (2014). https://doi.org/10.7567/JJAP.53.04EF07
  58. Z. Chen, D. Han, N. Zhao, J. Wu, Y. Cong, J. Dong, F. Zhao, S. Zhang, X. Zhang, Y. Wang, and L. Liu, Jpn. J. Appl. Phys., 54, 04DF03 (2015). https://doi.org/10.7567/JJAP.54.04DF03
  59. G. Liu, A. Liu, F. Shan, Y. Meng, B. Shin, E. Fortunato, and R. Martins, Appl. Phys. Lett., 105, 113509 (2014). https://doi.org/10.1063/1.4895782
  60. M. Mativenga, S. An, and J. Jang, IEEE Electron Dev. Lett., 34, 1533 (2013). https://doi.org/10.1109/LED.2013.2284599
  61. X. Li, D. Geng, M. Mativenga, Y. Chen, and J. Jang, IEEE Electron Dev. Lett., 35, 1242 (2014). https://doi.org/10.1109/LED.2014.2362992
  62. Y. Chen, D. Geng, M. Mativenga, H. Nam, and J. Jang, IEEE Electron Dev. Lett., 36, 153 (2015). https://doi.org/10.1109/LED.2014.2379700
  63. B. Ahn, H. Shin, H. Kim, J. Park, and J. Jeong, Appl. Phys. Lett., 93, 203506 (2008). https://doi.org/10.1063/1.3028340
  64. W. Kim, J. Bang, H. Uhm, S. Lee, and J. Park, Thin Solid Films, 519, 1573 (2010). https://doi.org/10.1016/j.tsf.2010.08.082
  65. R. Navamathavan, R. Nirmala, and C. Lee, Vacuum, 85, 904 (2011). https://doi.org/10.1016/j.vacuum.2011.01.008
  66. J. Kang, E. Cho, C. Kim, M. Lee, S. Lee, J. Myoung, and I. Yun, Appl. Phys. Lett., 102, 222103 (2013). https://doi.org/10.1063/1.4809727
  67. J. Park, J. Electroceram., 25, 145 (2010). https://doi.org/10.1007/s10832-010-9605-8
  68. P. Barquinha, A. Vila, G. Goncalves, L. Pereira, and R. Martins, IEEE Trans. Electron Dev., 55, 954 (2008). https://doi.org/10.1109/TED.2008.916717
  69. H. Hsu, C. Chang, C. Cheng, S. Chiou, and C. Huang, IEEE Electron Dev. Lett., 35, 87 (2014). https://doi.org/10.1109/LED.2013.2290707
  70. H. Liu, Y. Lai, C. Lai, B. Wu, H. Zan, P. Yu, Y. Chueh, and C. Tsai, ACS Appl. Mater. Interfaces, 7, 232 (2015). https://doi.org/10.1021/am5059316
  71. M. Kim, J. Jeong, H. Lee, T. Ahn, H. Shin, J. Park, J. Jeong, Y. Mo, and H. Kim, Appl. Phys. Lett., 90, 212114 (2007). https://doi.org/10.1063/1.2742790
  72. D. Geng, D. Kang, and J. Jang, IEEE Electron Dev. Lett., 32, 758 (2011). https://doi.org/10.1109/LED.2011.2122330
  73. S. Park, J. Kim, M. Ryu, J. Pi, C. Hwang, and S. Yoon, Jpn. J. Appl. Phys., 52, 100209 (2013). https://doi.org/10.7567/JJAP.52.100209
  74. J. Park, S. Ahn, and H. Lee, ACS Appl. Mater. Interfaces, 5, 12262 (2013). https://doi.org/10.1021/am404490t
  75. G. Huang, L. Duan, G. Dong, D. Zhang, and Y. Qiu, ACS Appl. Mater. Interfaces, 6, 20786 (2014). https://doi.org/10.1021/am5050295
  76. C. Avis, H. Hwang, and J. Jang, ACS Appl. Mater. Interfaces, 6, 10941 (2014). https://doi.org/10.1021/am501153w
  77. K. Kim, S. Park, K. Lim, C. Shin, J. Myoung and Y. Kim, J. Mater. Chem., 22, 23120 (2012). https://doi.org/10.1039/c2jm33790h
  78. Y. Kim, C. Avis, and J. Jang, ECS Solid State Lett., 1, Q23 (2012). https://doi.org/10.1149/2.017202ssl
  79. Y. Lee and W. Choi, ACS Appl. Mater. Interfaces, 6, 11167 (2014). https://doi.org/10.1021/am5009826
  80. Y. Kikuchi, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films, 518, 3017 (2010). https://doi.org/10.1016/j.tsf.2009.10.132
  81. S. Lim, S. Kwon, H. Kim, and J. Park, Appl. Phys. Lett., 91, 183517 (2007). https://doi.org/10.1063/1.2803219
  82. J. Jo, H. Choi, J. Yun, H. Kim, O. Seo, and B. Lee, Thin Solid Films, 517, 6337 (2009). https://doi.org/10.1016/j.tsf.2009.02.083
  83. L. Liang, Z. Liu, H. Cao, Z. Yu, Y. Shi, A. Chen, H. Zhangd, Y. Fang, and X. Sun, J. Electrochem. Soc., 157, H598 (2010). https://doi.org/10.1149/1.3385390

Cited by

  1. Improvement in negative bias illumination stress stability of In–Ga–Zn–O thin film transistors using HfO2 gate insulators by controlling atomic-layer-deposition conditions vol.50, pp.49, 2017, https://doi.org/10.1088/1361-6463/aa9489