• Title/Summary/Keyword: Flexible

Search Result 9,744, Processing Time 0.052 seconds

Direct Fabrication of a-Si:H Thin Film Transistor Arrays on Flexible Substrates: Critical Challenges and Enabling Solutions

  • O'Rourke, Shawn M.;Loy, Douglas E.;Moyer, Curt;Bawolek, Edward J.;Ageno, Scott K.;O'Brien, Barry P.;Marrs, Michael;Bottesch, Dirk;Dailey, Jeff;Naujokaitis, Rob;Kaminski, Jann P.;Allee, David R.;Venugopal, Sameer M.;Haq, Jesmin;Colaneri, Nicholas;Raupp, Gregory B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1459-1462
    • /
    • 2008
  • In this paper we describe solutions to address critical challenges in direct fabrication of amorphous silicon thin film transistor (TFTs) arrays for active matrix flexible displays. For all flexible substrates a manufacturable handling protocol in automated display-scale equipment is required. For metal foil substrates the principal challenges are planarization and electrical isolation, and management of stress (CTE mismatch) during TFT fabrication. For plastic substrates the principal challenge is dimensional instability management.

  • PDF

Technology of Flexible Semiconductor/Memory Device (유연 반도체/메모리 소자 기술)

  • Ahn, Jong-Hyun;Lee, Hyouk;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • Recently flexible electronic devices have attracted a great deal of attention because of new application possibilities including flexible display, flexible memory, flexible solar cell and flexible sensor. In particular, development of flexible memory is essential to complete the flexible integrated systems such as flexible smart phone and wearable computer. Research of flexible memory has primarily focused on organic-based materials. However, organic flexible memory has still several disadvantages, including lower electrical performance and long-term reliability. Therefore, emerging research in flexible electronics seeks to develop flexible and stretchable technologies that offer the high performance of conventional wafer-based devices as well as superior flexibility. Development of flexible memory with inorganic silicon materials is based on the design principle that any material, in sufficiently thin form, is flexible and bendable since the bending strain is directly proportional to thickness. This article reviews progress in recent technologies for flexible memory and flexible electronics with inorganic silicon materials, including transfer printing technology, wavy or serpentine interconnection structure for reducing strain, and wafer thinning technology.

Direct Fabrication of a-Si:H TFT Arrays on Flexible Substrates;Principal Manufacturing Challenges and Solutions

  • O’Rourke, Shawn M.;Loy, Douglas E.;Moyer, Curt;Ageno, Scott K.;O’Brien, Barry P.;Bottesch, Dirk;Marrs, Michael;Dailey, Jeff;Bawolek, Edward J.;Trujillo, Jovan;Kaminski, Jann;Allee, David R.;Venugopal, Sameer M.;Cordova, Rita;Colaneri, Nick;Raupp, Gregory B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.251-254
    • /
    • 2007
  • Principal challenges to $\underline{direct\;fabrication}$ of high performance a-Si:H transistor arrays on flexible substrates include automated handling through bonding-debonding processes, substrate-compatible low temperature fabrication processes, management of dimensional instability of plastic substrates, and planarization and management of CTE mismatch for stainless steel foils. Viable solutions to address these challenges are described.

  • PDF

Consideration on Design and Management of Flexible Hose through the Case Study of Chlorine Leak (염소 누출 사고사례연구를 통한 Flexible hose 설계 및 관리 방안 고찰)

  • Park, Suyoul;Yim, Ji-pyo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.351-357
    • /
    • 2019
  • This research was performed to propose domestic standard for design and management of flexible hose by analyzing chlorine leak caused by breakage of the hose in Ulsan, 2018. The leak had multiple causes but this paper focuses on analyzing the cause of breakage of flexible hose, the direct cause. According to the analysis, flexible hose that the company of the accident used for chlorine transfer was inappropriate in several aspects including material and wall thickness. And even pressure test had been conducted below operating pressure. Upon investigation on five companies that handle chlorine in Ulsan, four companies were using inappropriate flexible hose for chlorine transfer. Since there is no domestic standard for the design of flexible hose for chlorine transfer at present, it is hard to examine its design adequacy. Design standard of flexible hose used in chlorine transfer that is applicable domestically is proposed based on this research. It will contribute to the reduction in risk of breakage of the hose if the proposed standard could be applied in design and examination of flexible hose.

Threshold Voltage Instability in a-Si:H TFTs and the Implications for Flexible Displays and Circuits

  • Allee, D.R.;Venugopal, S.M.;Shringarpure, R.;Kaftanoglu, K.;Uppili, S.G.;Clark, L.T.;Vogt, B.;Bawolek, E.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1297-1300
    • /
    • 2008
  • Electrical stress degradation of low temperature, amorphous silicon thin film transistors is reviewed, and the implications for various types of flexible circuitry including active matrix backplanes, integrated drivers and general purpose digital circuitry are examined. A circuit modeling tool that enables the prediction of complex circuit degradation is presented.

  • PDF

High Performance Flexible Inorganic Electronic Systems

  • Park, Gwi-Il;Lee, Geon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

A study on the MPPT tracking algorithm using angle control of flexible PV in BIPV (BIPV에서 Flexible PV의 각도 조절을 이용한 MPPT 추적 알고리즘 연구)

  • Kim, Jaejin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.3
    • /
    • pp.27-33
    • /
    • 2017
  • In this paper presents the MPPT tracking algorithm using angle control of flexible PV in BIPV. The proposed algorithm is based on MPPT tracking algorithm for curtain wall using flexible PV. It is an algorithm to find optimal power generation condition by controlling the angle of flexible PV using the air layer of window. The angle of flexible PV tests the power generation by separating the center of flexible PV into the interior angle in the interior direction and the external angle in the center of flexible PV. When the angle of flexible PV was used as interior angle, the generation amount was increased by 15.79% and increased by 8.45% compared with the external angle. MPPT tracking is performed on the generation amount of the interior angle which has the most power after comparing the generation amount according to the bending shape of the flexible PV. This algorithm can be the most efficient method for the curtain wall using flexible PV because the bending pattern with the greatest amount of power generation may be different because the environment of the building applying the curtain wall is different.

A Study on the Development and Commercialization Trends of Wearable Fashion Products Using Flexible Displays (플렉시블 디스플레이가 이용된 웨어러블 패션 제품 개발 및 상용화 동향에 관한 연구)

  • Lee, Hyewon
    • Journal of Fashion Business
    • /
    • v.25 no.4
    • /
    • pp.125-140
    • /
    • 2021
  • Recently, flexible displays have been used as part of fashion beyond the concept of parts for electronic products. The flexible display applied to wearable fashion products flexibly bends according to the wearing position of the human body and, at the same time, decorates the fashion product more splendidly through the screen on which images or videos are displayed. Flexible displays, which are used for clothes and accessories, combine analogue fashion sensibility with digital screens to create a new level of convergence product design and expand the range of fashion design and fashion materials. This study aims to analyze the trends of the development and commercialization of fashion products that use flexible displays. As a research method, theoretical research and empirical research through case analysis were conducted in parallel. First, as a theoretical study, the morphological and technical characteristics of flexible displays were examined. Through theoretical studies, the effect of the characteristics of flexible displays on the development of wearable fashion products was investigated. Second, as an empirical case study, the design of wearable fashion products using flexible displays over the past 10 years and the characteristics of the displays used in the products were analyzed. Based on the characteristics analyzed, the product design, display and product integration methods and the commercialization stages of wearable fashion products using flexible displays were analyzed.

Design of Flexible Die Punch and Control System for Three-dimensional Curved Forming Surface (3차원 성형곡면 구현을 위한 가변금형의 펀치 및 제어시스템 설계)

  • Seo, Y.H.;Heo, S.C.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.206-213
    • /
    • 2011
  • A flexible die, which is composed of a number of punches with adjusted heights to form a three-dimensional curved surface, is a crucial part of a flexible forming technology. In this study, the punch and control system of the flexible die were designed. The flexible die is divided into three modules, namely, punch, control and joint, and the corresponding modules were developed. The punch module materializes a three-dimensional forming surface by the control module, which is composed of an AC servo motor set and a linear guide. The joint module is necessary for the sequential motion between the servo motor set and the punch module. A sequential motion algorithm for the AC servo motor set, that uses the data of the punch relative heights, was also proposed. Finally, a flexible stretch forming test was carried out using the presently designed flexible die.