• Title/Summary/Keyword: lethal factor

Search Result 79, Processing Time 0.031 seconds

Cytotoxic Effect and Fatty Acid Composition of Lipopolysaccharide from Vibrio vulnificus (Vibrio vulnificus Lipopolysaccharide의 세포 독성 효과와 지방산 조성)

  • Lee, Bong-Hun;Park, Jang-Su;Shin, Won-Kang
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.106-110
    • /
    • 1999
  • Lipopolysaccharide(LPS) from Vibrio vulnificus was purified, the fatty acid composition was analyzed, and Limulus gelation activity and lethal toxic activity were tested in order to investigate the cause of cytotoxicity by V. vutnificus. These results were compared to those of Escherichia coli LPS and Salmonella typhimurium LPS. LPS from V. vulnificus had a different fatty acid composition from those of E coli and S. typhimurium. The major fatty arid from each LPS was lauric acid for E. coli, rapric acid for S. typhimurium, and myristic acid for V. vulnificus. The Limulus gelation activities of three LPSs were the same(0.1ng/ml) and the lethal toxicity in BALB/c mouse of V vulnificus LPS was similar to those of E. coli LPS and S. typhimurium LPS. Such factor as exotoxin need to be considered to be the cause of cytotoxicity by V. vulnificus LPS.

  • PDF

Study for Characteristics of DDAM using MIL-S-901D Shock Test and Transient Response Analysis (MIL-S-901D 충격시험과 과도응답해석을 이용한 DDAM 특성에 관한 연구)

  • Song, Oh-Seop;Kim, Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1132-1139
    • /
    • 2006
  • Non-contact underwater explosions against surface ship could cause extensive equipment damage during wartime service. Thus, the need to develop methods for the design of shock resistant equipment structures and systems was strongly established. In analytical methods, DDAM(Dynamic Design and Analysis Method) and transient repsonse method are used for ship shock design. In this paper, to analyze the characteristics of DDAM, medium weight shock test, DDAM and transient response analysis for missile system equipment are performed.

Compound K Rich Fractions Regulate NF-κB-dependent Inflammatory Responses and Protect Mice from Endotoxin-induced Lethal Shock

  • Yang, Chul-Su;Yuk, Jae-Min;Ko, Sung-Ryong;Cho, Byung-Goo;Sohn, Hyun-Joo;Kim, Young-Sook;Wee, Jae-Joon;Do, Jae-Ho;Jo, Eun-Kyeong
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.315-323
    • /
    • 2008
  • In the previous studies, we isolated the compound K rich fractions (CKRF) and showed that CKRF inhibited Toll-like receptor (TLR) 4- or TLR9-induced inflammatory signaling. To extend our previous studies,1) we investigated the molecular mechanisms of CKRF in the TLR4-associated signaling via nuclear factor (NF)-${\kappa}B$, and in vivo role of CKRF for induction of tolerance in lipopolysaccharide (LPS)-induced septic shock. In murine bone marrow-dervied macrophages, CKRF significantly inhibited the induction of mRNA expression of proinflammatory mediators such as tumor necrosis factor-${\alpha}$, interleukin-6, cyclooxygenase-2, and inducible nitric oxide synthase. In addition, CKRF significantly attenuated the transcriptional activities of TLR4/LPS-induced NF-${\kappa}B$. Nuclear translocation of NF-${\kappa}B$ in response to LPS stimulation was significantly abrogated by pre-treatment with CKRF. Furthermore, CKRF inhibited the recruitment of p65 to the interferon-sensitive response element flanking region in response to LPS. Finally, oral administration of CKRF significantly protected mice from Gram-negative bacterial LPS-induced lethal shock and inhibited systemic inflammatory cytokine levels. Together, these results demonstrate that CKRF modulates the TLR4-dependent NF-${\kappa}B$ activation, and suggest a therapeutic role for Gram-negative septic shock.

Coexistence of plant species under harsh environmental conditions: an evaluation of niche differentiation and stochasticity along salt marsh creeks

  • Kim, Daehyun;Ohr, Sewon
    • Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.162-177
    • /
    • 2020
  • Background: Ecologists have achieved much progress in the study of mechanisms that maintain species coexistence and diversity. In this paper, we reviewed a wide range of past research related to these topics, focusing on five theoretical bodies: (1) coexistence by niche differentiation, (2) coexistence without niche differentiation, (3) coexistence along environmental stress gradients, (4) coexistence under non-equilibrium versus equilibrium conditions, and (5) modern perspectives. Results: From the review, we identified that there are few models that can be generally and confidently applicable to different ecological systems. This problem arises mainly because most theories have not been substantiated by enough empirical research based on field data to test various coexistence hypotheses at different spatial scales. We also found that little is still known about the mechanisms of species coexistence under harsh environmental conditions. This is because most previous models treat disturbance as a key factor shaping community structure, but they do not explicitly deal with stressful systems with non-lethal conditions. We evaluated the mainstream ideas of niche differentiation and stochasticity for the coexistence of plant species across salt marsh creeks in southwestern Denmark. The results showed that diversity indices, such as Shannon-Wiener diversity, richness, and evenness, decreased with increasing surface elevation and increased with increasing niche overlap and niche breadth. The two niche parameters linearly decreased with increasing elevation. These findings imply a substantial influence of an equalizing mechanism that reduces differences in relative fitness among species in the highly stressful environments of the marsh. We propose that species evenness increases under very harsh conditions if the associated stress is not lethal. Finally, we present a conceptual model of patterns related to the level of environmental stress and niche characteristics along a microhabitat gradient (i.e., surface elevation). Conclusions: The ecology of stressful systems with non-lethal conditions will be increasingly important as ongoing global-scale climate change extends the period of chronic stresses that are not necessarily fatal to inhabiting plants. We recommend that more ecologists continue this line of research.

Acute Toxicity of Synthetic Detergent on the Larvae of Loach, Misgurnus angillicaudatus (미꾸리 자어에 대한 합성세제의 급성독성)

  • LEE Jeong Yeol;CHIN Pyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.139-142
    • /
    • 1984
  • Short-term acute toxicity of synthetic detergent(LAS) to larvae of loach, Misgurnus angillicaudatus was examined by static bioassay. The larvae were exposed to 15 different concentration of synthetic detergent for 16, 48, 72, 96 and 120 hours in order to determine median lethal concentration($LC_{50}$). The $100\%$ mortarlity of larvae was showed within 120, 96, 48 and 16 hours for 6, 18, 30 and 38 ppm, respectively. The median lethal concentration values of the larvae were 12.59 ppm for 48 hours, 4.00 ppm for 96 hours and 1.02 ppm for 120 hours. The permissible toxicant concentration of acute toxicity to larvae was $0.37{\sim}0.43$ ppm, and application factor of the synthetec detergent was $0.093{\sim}0.108$. The median lethal time($LT_{50}$) for different concentration also was determined. The $LT_{50}$ of 0.2 ppm was found within 165.1 hours and 2 ppm was 106.2 hours, while the $LT_{50}$ of 8 ppm was 60.3 hours and that of 38 ppm was 23.5 hours.

  • PDF

A case of thanatophoric dysplasia type I with an R248C mutation in the $FGFR3$ gene

  • Noe, Eun-Jung;Yoo, Han-Wook;Kim, Kwang-Nam;Lee, So-Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.12
    • /
    • pp.1022-1025
    • /
    • 2010
  • Thanatophoric dysplasia (TD) is a short-limb neonatal dwarfism syndrome that is usually lethal in the perinatal period. It is characterized by shortening of the limbs, severely small thorax, large head with a prominent forehead, macrocephaly, curved femur, and flattened vertebral bodies. These malformations result from the mutation in fibroblast growth factor receptor 3 (FGFR-3) gene which is located on the short arm of chromosome 4. A definite diagnosis should be established by molecular genetic analysis to find out the abnormal mutations in the $FGFR3$ gene. We confirmed by detection of a R248C mutation in the $FGFR3$ gene in DNA analysis.

Detection of Virulence-Associated Genes in Clinical Isolates of Bacillus anthracis by Multiplex PCR and DNA Probes

  • Kumar, Sanjay;Tuteja, Urmil
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1475-1481
    • /
    • 2009
  • Anthrax is a zoonotic disease caused by Bacillus anthracis, and well recognized as a potential agent for bioterrorism. B. anthracis can be identified by detecting the virulence factors genes located on two plasmids, pXO1 and pXO2. The aim of the present study was to determine the presence of virulence genes in 27 isolates of B. anthracis isolated from clinical and environmental samples. For this purpose, multiplex PCR and DNA probes were designed to detect protective antigen (pag), edema factor (cya), lethal factor (lef), and capsule (cap) genes. Our results indicated that all the isolates contained all the above virulence genes, suggesting that the isolates were virulent. To the best our knowledge, this is the first study about the determination of virulence marker genes in clinical and environmental isolates of B. anthracis using multiplex PCR and DNA probes in India. We suggest that the above methods can be useful in specific identification of virulent B. anthracis in clinical and environmental samples.

Molecular Basis of the KEAP1-NRF2 Signaling Pathway

  • Takafumi Suzuki;Jun Takahashi;Masayuki Yamamoto
    • Molecules and Cells
    • /
    • v.46 no.3
    • /
    • pp.133-141
    • /
    • 2023
  • Transcription factor NRF2 (NF-E2-related factor 2) is a master regulator of cellular responses against environmental stresses. NRF2 induces expression of detoxification and antioxidant enzymes and suppresses inductions of pro-inflammatory cytokine genes. KEAP1 (Kelch-like ECH-associated protein 1) is an adaptor subunit of CULLIN 3 (CUL3)-based E3 ubiquitin ligase. KEAP1 regulates the activity of NRF2 and acts as a sensor for oxidative and electrophilic stresses. NRF2 has been found to be activated in many types of cancers with poor prognosis. Therapeutic strategies to control NRF2-overeactivated cancers have been considered not only by targeting cancer cells with NRF2 inhibitors or NRF2 synthetic lethal chemicals, but also by targeting host defense with NRF2 inducers. Understanding precise molecular mechanisms how the KEAP1-NRF2 system senses and regulates the cellular response is critical to overcome intractable NRF2-activated cancers.

Importance of Iron in the Toxicity of Vibrio vulnificus (Vibrio vulnificus의 독성에 있어서 Iron의 중요성)

  • 이봉헌;박흥재
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.501-504
    • /
    • 1998
  • The role of iron as a possible pathogenic factor in the Infection of V. vulnificus was examined in thins paper The effects of iron and $CCl_4$ on the growth of V. vulnificus in human and rabbit sera were also done. Injection of iron to mice resulted in a lowering of the 50% lethal dose and in a reduction in the time of death postinfection. Serum iron levels were also elevated by damaged livers with infections of $CCl_4$- The inoculum size required to kill these mice was directly correlated with serum iron Irvels. Iron appeared to be the limiting factor In the ability of thins organism to survive or grow in mammalian sera. These results, both in vitro and In vivo, provided strong evidence that iron may play a major role In the pathogenesis of V. vulnificus.

  • PDF

Development of human tumor necrosis factor-α muteins with improved therapeutic potential

  • Jang, Seung-Hwan;Kim, Hyo-Jin;Cho, Kwang-Hwi;Shin, Hang-Cheol
    • BMB Reports
    • /
    • v.42 no.5
    • /
    • pp.260-264
    • /
    • 2009
  • Tumor necrosis factor-$\alpha$ (TNF-$\alpha$) exhibits cytotoxicity towards various tumor cells in vitro and induces apoptotic necrosis in transplanted tumors in vivo. It also shows severe toxicity when used systemically for the treatment of cancer patients, hampering the development of TNF-$\alpha$ as a potential anticancer drug. In order to understand the structure-function relation of TNF-$\alpha$ with respect to receptor binding, we selected four regions on the bottom of the TNF-$\alpha$ trimer that are in close contact with the receptor and carried out mutagenesis studies and computational modeling. From the study, various TNF-$\alpha$ muteins with a high therapeutic index were identified. These results will provide a structural basis for the design of highly potent TNF-$\alpha$ for therapeutic purposes. By conjugating TNF-$\alpha$ muteins with a high therapeutic index to a fusion partner, which targets a marker of angiogenesis, it could be possible to develop TNF-$\alpha$ based anticancer drugs.