DOI QR코드

DOI QR Code

Molecular Basis of the KEAP1-NRF2 Signaling Pathway

  • Takafumi Suzuki (Department of Medical Biochemistry, Tohoku University Graduate School of Medicine) ;
  • Jun Takahashi (Department of Medical Biochemistry, Tohoku University Graduate School of Medicine) ;
  • Masayuki Yamamoto (Department of Medical Biochemistry, Tohoku University Graduate School of Medicine)
  • Received : 2023.02.05
  • Accepted : 2023.03.04
  • Published : 2023.03.31

Abstract

Transcription factor NRF2 (NF-E2-related factor 2) is a master regulator of cellular responses against environmental stresses. NRF2 induces expression of detoxification and antioxidant enzymes and suppresses inductions of pro-inflammatory cytokine genes. KEAP1 (Kelch-like ECH-associated protein 1) is an adaptor subunit of CULLIN 3 (CUL3)-based E3 ubiquitin ligase. KEAP1 regulates the activity of NRF2 and acts as a sensor for oxidative and electrophilic stresses. NRF2 has been found to be activated in many types of cancers with poor prognosis. Therapeutic strategies to control NRF2-overeactivated cancers have been considered not only by targeting cancer cells with NRF2 inhibitors or NRF2 synthetic lethal chemicals, but also by targeting host defense with NRF2 inducers. Understanding precise molecular mechanisms how the KEAP1-NRF2 system senses and regulates the cellular response is critical to overcome intractable NRF2-activated cancers.

Keywords

Acknowledgement

This work was supported in part by MEXT/JSPS KAKENHI (19H05649 to M.Y. and 22K06876 to T.S.), the Takeda Science Foundation (to T.S.), the Suzuken Memorial Foundation (to T.S.), the Mochida Memorial Foundation for Medical and Pharmaceutical Research (to T.S.), the Foundation for Promotion of Cancer Research (to T.S.), the Gonryo Medical Foundation (to T.S.), the Life Science Foundation of Japan (to T.S.), and Research Support Project for Life Science and Drug Discovery (Basis for Supporting Innovative Drug Discovery and Life Science Research [BINDS]) from AMED (JP22ama121038 to M.Y.).

References

  1. Adam, J., Hatipoglu, E., O'Flaherty, L., Ternette, N., Sahgal, N., Lockstone, H., Baban, D., Nye, E., Stamp, G.W., Wolhuter, K., et al. (2011). Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20, 524-537.  https://doi.org/10.1016/j.ccr.2011.09.006
  2. Aoki, Y., Sato, H., Nishimura, N., Takahashi, S., Itoh, K., and Yamamoto, M. (2001). Accelerated DNA adduct formation in the lung of the Nrf2 knockout mouse exposed to diesel exhaust. Toxicol. Appl. Pharmacol. 173, 154-160.  https://doi.org/10.1006/taap.2001.9176
  3. Baird, L. and Dinkova-Kostova, A.T. (2013). Diffusion dynamics of the Keap1-Cullin3 interaction in single live cells. Biochem. Biophys. Res. Commun. 433, 58-65.  https://doi.org/10.1016/j.bbrc.2013.02.065
  4. Baird, L., Suzuki, T., Takahashi, Y., Hishinuma, E., Saigusa, D., and Yamamoto, M. (2020). Geldanamycin-derived HSP90 inhibitors are synthetic lethal with NRF2. Mol. Cell. Biol. 40, e00377-20. 
  5. Baird, L. and Yamamoto, M. (2021). NRF2-dependent bioactivation of mitomycin C as a novel strategy to target KEAP1-NRF2 pathway activation in human cancer. Mol. Cell. Biol. 41, e00473-20. 
  6. Chorley, B.N., Campbell, M.R., Wang, X., Karaca, M., Sambandan, D., Bangura, F., Xue, P., Pi, J., Kleeberger, S.R., and Bell, D.A. (2012). Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha. Nucleic Acids Res. 40, 7416-7429.  https://doi.org/10.1093/nar/gks409
  7. Cleasby, A., Yon, J., Day, P.J., Richardson, C., Tickle, I.J., Williams, P.A., Callahan, J.F., Carr, R., Concha, N., Kerns, J.K., et al. (2014). Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PLoS One 9, e98896. 
  8. Cuadrado, A. (2015). Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP. Free Radic. Biol. Med. 88(Pt B), 147-157.  https://doi.org/10.1016/j.freeradbiomed.2015.04.029
  9. Dayalan Naidu, S., Suzuki, T., Dikovskaya, D., Knatko, E.V., Higgins, M., Sato, M., Novak, M., Villegas, J.A., Moore, T.W., Yamamoto, M., et al. (2022). The isoquinoline PRL-295 increases the thermostability of Keap1 and disrupts its interaction with Nrf2. iScience 25, 103703. 
  10. DeNicola, G.M., Karreth, F.A., Humpton, T.J., Gopinathan, A., Wei, C., Frese, K., Mangal, D., Yu, K.H., Yeo, C.J., Calhoun, E.S., et al. (2011). Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106-109.  https://doi.org/10.1038/nature10189
  11. Dinkova-Kostova, A.T., Holtzclaw, W.D., and Wakabayashi, N. (2005). Keap1, the sensor for electrophiles and oxidants that regulates the phase 2 response, is a zinc metalloprotein. Biochemistry 44, 6889-6899.  https://doi.org/10.1021/bi047434h
  12. Dinkova-Kostova, A.T. and Talalay, P. (2008). Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol. Nutr. Food Res. 52 Suppl 1, S128-S138.  https://doi.org/10.1002/mnfr.200700195
  13. Eggler, A.L., Liu, G., Pezzuto, J.M., van Breemen, R.B., and Mesecar, A.D. (2005). Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Proc. Natl. Acad. Sci. U. S. A. 102, 10070-10075.  https://doi.org/10.1073/pnas.0502402102
  14. Eggler, A.L., Small, E., Hannink, M., and Mesecar, A.D. (2009). Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1. Biochem. J. 422, 171-180.  https://doi.org/10.1042/BJ20090471
  15. Friling, R.S., Bensimon, A., Tichauer, Y., and Daniel, V. (1990). Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element. Proc. Natl. Acad. Sci. U. S. A. 87, 6258-6262.  https://doi.org/10.1073/pnas.87.16.6258
  16. Fukutomi, T., Takagi, K., Mizushima, T., Ohuchi, N., and Yamamoto, M. (2014). Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex degron and Keap1. Mol. Cell. Biol. 34, 832-846.  https://doi.org/10.1128/MCB.01191-13
  17. Gold, R., Kappos, L., Arnold, D.L., Bar-Or, A., Giovannoni, G., Selmaj, K., Tornatore, C., Sweetser, M.T., Yang, M., Sheikh, S.I., et al. (2012). Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 367, 1098-1107.  https://doi.org/10.1056/NEJMoa1114287
  18. Goldstein, L.D., Lee, J., Gnad, F., Klijn, C., Schaub, A., Reeder, J., Daemen, A., Bakalarski, C.E., Holcomb, T., Shames, D.S., et al. (2016). Recurrent loss of NFE2L2 exon 2 is a mechanism for Nrf2 pathway activation in human cancers. Cell Rep. 16, 2605-2617.  https://doi.org/10.1016/j.celrep.2016.08.010
  19. Hayashi, M., Kuga, A., Suzuki, M., Panda, H., Kitamura, H., Motohashi, H., and Yamamoto, M. (2020). Microenvironmental activation of Nrf2 restricts the progression of Nrf2-activated malignant tumors. Cancer Res. 80, 3331-3344.  https://doi.org/10.1158/0008-5472.CAN-19-2888
  20. Hayashi, T., Kudo, T., Fujita, R., Fujita, S.I., Tsubouchi, H., Fuseya, S., Suzuki, R., Hamada, M., Okada, R., Muratani, M., et al. (2021). Nuclear factor E2-related factor 2 (NRF2) deficiency accelerates fast fibre type transition in soleus muscle during space flight. Commun. Biol. 4, 787. 
  21. Hiramoto, K., Satoh, H., Suzuki, T., Moriguchi, T., Pi, J., Shimosegawa, T., and Yamamoto, M. (2014). Myeloid lineage-specific deletion of antioxidant system enhances tumor metastasis. Cancer Prev. Res. (Phila.) 7, 835-844.  https://doi.org/10.1158/1940-6207.CAPR-14-0094
  22. Hirotsu, Y., Katsuoka, F., Funayama, R., Nagashima, T., Nishida, Y., Nakayama, K., Engel, J.D., and Yamamoto, M. (2012). Nrf2-MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Res. 40, 10228-10239.  https://doi.org/10.1093/nar/gks827
  23. Homma, S., Ishii, Y., Morishima, Y., Yamadori, T., Matsuno, Y., Haraguchi, N., Kikuchi, N., Satoh, H., Sakamoto, T., Hizawa, N., et al. (2009). Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin. Cancer Res. 15, 3423-3432.  https://doi.org/10.1158/1078-0432.CCR-08-2822
  24. Horie, Y., Suzuki, T., Inoue, J., Iso, T., Wells, G., Moore, T.W., Mizushima, T., Dinkova-Kostova, A.T., Kasai, T., Kamei, T., et al. (2021). Molecular basis for the disruption of Keap1-Nrf2 interaction via Hinge & Latch mechanism. Commun. Biol. 4, 576. 
  25. Ishii, T., Itoh, K., Takahashi, S., Sato, H., Yanagawa, T., Katoh, Y., Bannai, S., and Yamamoto, M. (2000). Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J. Biol. Chem. 275, 16023-16029.  https://doi.org/10.1074/jbc.275.21.16023
  26. Iso, T., Suzuki, T., Baird, L., and Yamamoto, M. (2016). Absolute amounts and status of the Nrf2-Keap1-Cul3 complex within cells. Mol. Cell. Biol. 36, 3100-3112.  https://doi.org/10.1128/MCB.00389-16
  27. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313-322.  https://doi.org/10.1006/bbrc.1997.6943
  28. Itoh, K., Igarashi, K., Hayashi, N., Nishizawa, M., and Yamamoto, M. (1995). Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Mol. Cell. Biol. 15, 4184-4193.  https://doi.org/10.1128/MCB.15.8.4184
  29. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J.D., and Yamamoto, M. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13, 76-86.  https://doi.org/10.1101/gad.13.1.76
  30. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., O'Connor, T., and Yamamoto, M. (2003). Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8, 379-391.  https://doi.org/10.1046/j.1365-2443.2003.00640.x
  31. Katsuoka, F., Otsuki, A., Takahashi, M., Ito, S., and Yamamoto, M. (2019). Direct and specific functional evaluation of the Nrf2 and MafG heterodimer by introducing a tethered dimer into small Maf-deficient cells. Mol. Cell. Biol. 39, e00273-19. 
  32. Kobayashi, A., Kang, M.I., Okawa, H., Ohtsuji, M., Zenke, Y., Chiba, T., Igarashi, K., and Yamamoto, M. (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 24, 7130-7139.  https://doi.org/10.1128/MCB.24.16.7130-7139.2004
  33. Kobayashi, A., Kang, M.I., Watai, Y., Tong, K.I., Shibata, T., Uchida, K., and Yamamoto, M. (2006). Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol. Cell. Biol. 26, 221-229.  https://doi.org/10.1128/MCB.26.1.221-229.2006
  34. Kobayashi, E.H., Suzuki, T., Funayama, R., Nagashima, T., Hayashi, M., Sekine, H., Tanaka, N., Moriguchi, T., Motohashi, H., Nakayama, K., et al. (2016). Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7, 11624. 
  35. Kobayashi, M., Li, L., Iwamoto, N., Nakajima-Takagi, Y., Kaneko, H., Nakayama, Y., Eguchi, M., Wada, Y., Kumagai, Y., and Yamamoto, M. (2009). The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol. Cell. Biol. 29, 493-502.  https://doi.org/10.1128/MCB.01080-08
  36. Komatsu, M., Kurokawa, H., Waguri, S., Taguchi, K., Kobayashi, A., Ichimura, Y., Sou, Y.S., Ueno, I., Sakamoto, A., Tong, K.I., et al. (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213-223.  https://doi.org/10.1038/ncb2021
  37. Kuga, A., Tsuchida, K., Panda, H., Horiuchi, M., Otsuki, A., Taguchi, K., Katsuoka, F., Suzuki, M., and Yamamoto, M. (2022). The β-TrCP-mediated pathway cooperates with the Keap1-mediated pathway in Nrf2 degradation in vivo. Mol. Cell. Biol. 42, e0056321. 
  38. Lazzara, P.R., David, B.P., Ankireddy, A., Richardson, B.G., Dye, K., Ratia, K.M., Reddy, S.P., and Moore, T.W. (2020). Isoquinoline Kelch-like ECH-associated protein 1-nuclear factor (erythroid-derived 2)-like 2 (KEAP1-NRF2) inhibitors with high metabolic stability. J. Med. Chem. 63, 6547-6560.  https://doi.org/10.1021/acs.jmedchem.9b01074
  39. Li, Y., Paonessa, J.D., and Zhang, Y. (2012). Mechanism of chemical activation of Nrf2. PLoS One 7, e35122. 
  40. McMahon, M., Lamont, D.J., Beattie, K.A., and Hayes, J.D. (2010). Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc. Natl. Acad. Sci. U. S. A. 107, 18838-18843.  https://doi.org/10.1073/pnas.1007387107
  41. Mitsuishi, Y., Taguchi, K., Kawatani, Y., Shibata, T., Nukiwa, T., Aburatani, H., Yamamoto, M., and Motohashi, H. (2012). Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22, 66-79.  https://doi.org/10.1016/j.ccr.2012.05.016
  42. Ohkoshi, A., Suzuki, T., Ono, M., Kobayashi, T., and Yamamoto, M. (2013). Roles of Keap1-Nrf2 system in upper aerodigestive tract carcinogenesis. Cancer Prev. Res. (Phila.) 6, 149-159.  https://doi.org/10.1158/1940-6207.CAPR-12-0401-T
  43. Ooi, A., Dykema, K., Ansari, A., Petillo, D., Snider, J., Kahnoski, R., Anema, J., Craig, D., Carpten, J., Teh, B.T., et al. (2013). CUL3 and NRF2 mutations confer an NRF2 activation phenotype in a sporadic form of papillary renal cell carcinoma. Cancer Res. 73, 2044-2051.  https://doi.org/10.1158/0008-5472.CAN-12-3227
  44. Ooi, A., Wong, J.C., Petillo, D., Roossien, D., Perrier-Trudova, V., Whitten, D., Min, B.W., Tan, M.H., Zhang, Z., Yang, X.J., et al. (2011). An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 20, 511-523.  https://doi.org/10.1016/j.ccr.2011.08.024
  45. Otsuki, A., Suzuki, M., Katsuoka, F., Tsuchida, K., Suda, H., Morita, M., Shimizu, R., and Yamamoto, M. (2016). Unique cistrome defined as CsMBE is strictly required for Nrf2-sMaf heterodimer function in cytoprotection. Free Radic. Biol. Med. 91, 45-57.  https://doi.org/10.1016/j.freeradbiomed.2015.12.005
  46. Padmanabhan, B., Tong, K.I., Ohta, T., Nakamura, Y., Scharlock, M., Ohtsuji, M., Kang, M.I., Kobayashi, A., Yokoyama, S., and Yamamoto, M. (2006). Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol. Cell 21, 689-700.  https://doi.org/10.1016/j.molcel.2006.01.013
  47. Panda, H., Suzuki, M., Naito, M., Saito, R., Wen, H., Baird, L., Uruno, A., Miyata, K., and Yamamoto, M. (2022). Halofuginone micelle nanoparticles eradicate Nrf2-activated lung adenocarcinoma without systemic toxicity. Free Radic. Biol. Med. 187, 92-104.  https://doi.org/10.1016/j.freeradbiomed.2022.05.017
  48. Ramos-Gomez, M., Dolan, P.M., Itoh, K., Yamamoto, M., and Kensler, T.W. (2003). Interactive effects of nrf2 genotype and oltipraz on benzo[a] pyrene-DNA adducts and tumor yield in mice. Carcinogenesis 24, 461-467.  https://doi.org/10.1093/carcin/24.3.461
  49. Richardson, B.G., Jain, A.D., Potteti, H.R., Lazzara, P.R., David, B.P., Tamatam, C.R., Choma, E., Skowron, K., Dye, K., Siddiqui, Z., et al. (2018). Replacement of a naphthalene scaffold in Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor (erythroid-derived 2)-like 2 (NRF2) inhibitors. J. Med. Chem. 61, 8029-8047.  https://doi.org/10.1021/acs.jmedchem.8b01133
  50. Romero, R., Sayin, V.I., Davidson, S.M., Bauer, M.R., Singh, S.X., LeBoeuf, S.E., Karakousi, T.R., Ellis, D.C., Bhutkar, A., Sanchez-Rivera, F.J., et al. (2017). Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 23, 1362-1368.  https://doi.org/10.1038/nm.4407
  51. Rushmore, T.H., Morton, M.R., and Pickett, C.B. (1991). The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J. Biol. Chem. 266, 11632-11639.  https://doi.org/10.1016/S0021-9258(18)99004-6
  52. Saito, R., Suzuki, T., Hiramoto, K., Asami, S., Naganuma, E., Suda, H., Iso, T., Yamamoto, H., Morita, M., Baird, L., et al. (2016). Characterizations of three major cysteine sensors of Keap1 in stress response. Mol. Cell. Biol. 36, 271-284.  https://doi.org/10.1128/MCB.00868-15
  53. Satoh, H., Moriguchi, T., Taguchi, K., Takai, J., Maher, J.M., Suzuki, T., Winnard, P.T., Raman, V., Ebina, M., Nukiwa, T., et al. (2010). Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung. Carcinogenesis 31, 1833-1843.  https://doi.org/10.1093/carcin/bgq105
  54. Sengoku, T., Shiina, M., Suzuki, K., Hamada, K., Sato, K., Uchiyama, A., Kobayashi, S., Oguni, A., Itaya, H., Kasahara, K., et al. (2022). Structural basis of transcription regulation by CNC family transcription factor, Nrf2. Nucleic Acids Res. 50, 12543-12557.  https://doi.org/10.1093/nar/gkac1102
  55. Shibata, T., Ohta, T., Tong, K.I., Kokubu, A., Odogawa, R., Tsuta, K., Asamura, H., Yamamoto, M., and Hirohashi, S. (2008). Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl. Acad. Sci. U. S. A. 105, 13568-13573.  https://doi.org/10.1073/pnas.0806268105
  56. Shibata, T., Saito, S., Kokubu, A., Suzuki, T., Yamamoto, M., and Hirohashi, S. (2010). Global downstream pathway analysis reveals a dependence of oncogenic NF-E2-related factor 2 mutation on the mTOR growth signaling pathway. Cancer Res. 70, 9095-9105.  https://doi.org/10.1158/0008-5472.CAN-10-0384
  57. Sies, H., Belousov, V.V., Chandel, N.S., Davies, M.J., Jones, D.P., Mann, G.E., Murphy, M.P., Yamamoto, M., and Winterbourn, C. (2022). Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499-515.  https://doi.org/10.1038/s41580-022-00456-z
  58. Suzuki, N., Iwamura, Y., Nakai, T., Kato, K., Otsuki, A., Uruno, A., Saigusa, D., Taguchi, K., Suzuki, M., Shimizu, R., et al. (2022). Gene expression changes related to bone mineralization, blood pressure and lipid metabolism in mouse kidneys after space travel. Kidney Int. 101, 92-105.  https://doi.org/10.1016/j.kint.2021.09.031
  59. Suzuki, T., Hidaka, T., Kumagai, Y., and Yamamoto, M. (2020a). Environmental pollutants and the immune response. Nat. Immunol. 21, 1486-1495.  https://doi.org/10.1038/s41590-020-0802-6
  60. Suzuki, T., Motohashi, H., and Yamamoto, M. (2013). Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol. Sci. 34, 340-346.  https://doi.org/10.1016/j.tips.2013.04.005
  61. Suzuki, T., Muramatsu, A., Saito, R., Iso, T., Shibata, T., Kuwata, K., Kawaguchi, S.I., Iwawaki, T., Adachi, S., Suda, H., et al. (2019). Molecular mechanism of cellular oxidative stress sensing by Keap1. Cell Rep. 28, 746-758.e4.  https://doi.org/10.1016/j.celrep.2019.06.047
  62. Suzuki, T., Uruno, A., Yumoto, A., Taguchi, K., Suzuki, M., Harada, N., Ryoke, R., Naganuma, E., Osanai, N., Goto, A., et al. (2020b). Nrf2 contributes to the weight gain of mice during space travel. Commun. Biol. 3, 496. 
  63. Suzuki, T. and Yamamoto, M. (2015). Molecular basis of the Keap1-Nrf2 system. Free Radic. Biol. Med. 88(Pt B), 93-100.  https://doi.org/10.1016/j.freeradbiomed.2015.06.006
  64. Suzuki, T. and Yamamoto, M. (2017). Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. J. Biol. Chem. 292, 16817-16824.  https://doi.org/10.1074/jbc.R117.800169
  65. Szczesny-Malysiak, E., Stojak, M., Campagna, R., Grosicki, M., Jamrozik, M., Kaczara, P., and Chlopicki, S. (2020). Bardoxolone methyl displays detrimental effects on endothelial bioenergetics, suppresses endothelial ET-1 release, and increases endothelial permeability in human microvascular endothelium. Oxid. Med. Cell. Longev. 2020, 4678252. 
  66. Takaya, K., Suzuki, T., Motohashi, H., Onodera, K., Satomi, S., Kensler, T.W., and Yamamoto, M. (2012). Validation of the multiple sensor mechanism of the Keap1-Nrf2 system. Free Radic. Biol. Med. 53, 817-827.  https://doi.org/10.1016/j.freeradbiomed.2012.06.023
  67. Tong, K.I., Katoh, Y., Kusunoki, H., Itoh, K., Tanaka, T., and Yamamoto, M. (2006a). Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol. Cell. Biol. 26, 2887-2900.  https://doi.org/10.1128/MCB.26.8.2887-2900.2006
  68. Tong, K.I., Kobayashi, A., Katsuoka, F., and Yamamoto, M. (2006b). Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol. Chem. 387, 1311-1320.  https://doi.org/10.1515/BC.2006.164
  69. Tong, K.I., Padmanabhan, B., Kobayashi, A., Shang, C., Hirotsu, Y., Yokoyama, S., and Yamamoto, M. (2007). Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol. Cell. Biol. 27, 7511-7521.  https://doi.org/10.1128/MCB.00753-07
  70. Tsuchida, K., Tsujita, T., Hayashi, M., Ojima, A., Keleku-Lukwete, N., Katsuoka, F., Otsuki, A., Kikuchi, H., Oshima, Y., Suzuki, M., et al. (2017). Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation. Free Radic. Biol. Med. 103, 236-247.  https://doi.org/10.1016/j.freeradbiomed.2016.12.041
  71. Uruno, A., Saigusa, D., Suzuki, T., Yumoto, A., Nakamura, T., Matsukawa, N., Yamazaki, T., Saito, R., Taguchi, K., Suzuki, M., et al. (2021). Nrf2 plays a critical role in the metabolic response during and after spaceflight. Commun. Biol. 4, 1381. 
  72. Wakabayashi, N., Dinkova-Kostova, A.T., Holtzclaw, W.D., Kang, M.I., Kobayashi, A., Yamamoto, M., Kensler, T.W., and Talalay, P. (2004). Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc. Natl. Acad. Sci. U. S. A. 101, 2040-2045.  https://doi.org/10.1073/pnas.0307301101
  73. Wang, R., An, J., Ji, F., Jiao, H., Sun, H., and Zhou, D. (2008). Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. Biochem. Biophys. Res. Commun. 373, 151-154.  https://doi.org/10.1016/j.bbrc.2008.06.004
  74. Watai, Y., Kobayashi, A., Nagase, H., Mizukami, M., McEvoy, J., Singer, J.D., Itoh, K., and Yamamoto, M. (2007). Subcellular localization and cytoplasmic complex status of endogenous Keap1. Genes Cells 12, 1163-1178.  https://doi.org/10.1111/j.1365-2443.2007.01118.x
  75. Yamamoto, M., Kensler, T.W., and Motohashi, H. (2018). The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 98, 1169-1203.  https://doi.org/10.1152/physrev.00023.2017
  76. Yamamoto, T., Suzuki, T., Kobayashi, A., Wakabayashi, J., Maher, J., Motohashi, H., and Yamamoto, M. (2008). Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol. Cell. Biol. 28, 2758-2770.  https://doi.org/10.1128/MCB.01704-07
  77. de Zeeuw, D., Akizawa, T., Audhya, P., Bakris, G.L., Chin, M., Christ-Schmidt, H., Goldsberry, A., Houser, M., Krauth, M., Lambers Heerspink, H.J., et al. (2013). Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369, 2492-2503.  https://doi.org/10.1056/NEJMoa1306033
  78. Zhang, A., Suzuki, T., Adachi, S., Naganuma, E., Suzuki, N., Hosoya, T., Itoh, K., Sporn, M.B., and Yamamoto, M. (2021). Distinct regulations of HO-1 gene expression for stress response and substrate induction. Mol. Cell. Biol. 41, e0023621. 
  79. Zhang, D.D. and Hannink, M. (2003). Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol. Cell. Biol. 23, 8137-8151.  https://doi.org/10.1128/MCB.23.22.8137-8151.2003
  80. Zhang, D.D., Lo, S.C., Cross, J.V., Templeton, D.J., and Hannink, M. (2004). Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol. 24, 10941-10953.  https://doi.org/10.1128/MCB.24.24.10941-10953.2004