DOI QR코드

DOI QR Code

Development of human tumor necrosis factor-α muteins with improved therapeutic potential

  • Jang, Seung-Hwan (Department of Bioinformatics and Life Science and Computer Aided Molecular Design Research Center, Soongsil University) ;
  • Kim, Hyo-Jin (Department of Bioinformatics and Life Science and Computer Aided Molecular Design Research Center, Soongsil University) ;
  • Cho, Kwang-Hwi (Department of Bioinformatics and Life Science and Computer Aided Molecular Design Research Center, Soongsil University) ;
  • Shin, Hang-Cheol (Department of Bioinformatics and Life Science and Computer Aided Molecular Design Research Center, Soongsil University)
  • Published : 2009.05.31

Abstract

Tumor necrosis factor-$\alpha$ (TNF-$\alpha$) exhibits cytotoxicity towards various tumor cells in vitro and induces apoptotic necrosis in transplanted tumors in vivo. It also shows severe toxicity when used systemically for the treatment of cancer patients, hampering the development of TNF-$\alpha$ as a potential anticancer drug. In order to understand the structure-function relation of TNF-$\alpha$ with respect to receptor binding, we selected four regions on the bottom of the TNF-$\alpha$ trimer that are in close contact with the receptor and carried out mutagenesis studies and computational modeling. From the study, various TNF-$\alpha$ muteins with a high therapeutic index were identified. These results will provide a structural basis for the design of highly potent TNF-$\alpha$ for therapeutic purposes. By conjugating TNF-$\alpha$ muteins with a high therapeutic index to a fusion partner, which targets a marker of angiogenesis, it could be possible to develop TNF-$\alpha$ based anticancer drugs.

Keywords

References

  1. Los, M., Burek, C. J., Stroh, C., Benedyk, K., Hug, H. and Mackiewicz, A. (2003) Anticancer drugs tomorrow: apoptotic pathways as targets for drug design. Drug Discov. Today 8, 67-77 https://doi.org/10.1016/S1359-6446(02)02563-1
  2. Gonzalez-Guerrico, A. M., Meshki, J., Xiao, L., Benavides, F., Conti, C. J. and Kazanietz, M. G. (2005) Molecular mechanisms of protein kinase c-induced apoptosis in prostate cancer cells. J. Biochem. Mol. Biol. 38, 639-645 https://doi.org/10.1016/0960-0760(91)90323-W
  3. Fiers, W. (1991) Tumor necrosis factor. Characterization at the molecular, cellular and in vivo level. FEBS Lett. 285, 199-212 https://doi.org/10.1016/0014-5793(91)80803-B
  4. Blick, M., Sherwin, S. A., Rosenblum, M. and Gutterman, J. (1987) Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Res. 47, 2986-2989
  5. Creaven, P. J., Plager, J. E., Dupere, S., Huben, R. P., Takita, H., Mittelman, A. and Proefrock, A. (1987) Phase I clinical trial of recombinant human tumor necrosis factor. Cancer Chemother. Pharmacol. 20, 137-144
  6. Kimura, K., Taguchi, T., Urushizaki, I., Ohno, R., Abe, O., Furue, H., Hattori, T., Ichihashi, H., Inoguchi, K. and Majima, H. (1987) Phase I study of recombinant human tumor necrosis factor. Cancer Chemother. Pharmacol. 20, 223-229 https://doi.org/10.1007/BF00570490
  7. Lejeune, F. J., Kroon, B. B., Di Filippo, F., Hoekstra, H. J., Santinam, M., Lienard, D. and Eggermont, A. M. (2001) Isolated limb perfusion: the European experience. Surg. Oncol. Clin. N. Am. 10, 821-832
  8. Hundsberger, H., Verin, A., Wiesner, C., Pfl$\ddot{u}$ger, M., Dulebo, A., Sch$\ddot{u}$tt, W., Lasters, I., M$\ddot{a}$nnel, D. N., Wendel, A. and Lucas, R. (2008) TNF: a moonlighting protein at the interface between cancer and infection. Front Biosci. 13, 5374-5386
  9. Curnis, F., Sacchi, A., Borgna, L., Magni, F., Gasparri, A. and Corti, A. (2000) Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat. Biotechnol. 18, 1185-1190 https://doi.org/10.1038/81183
  10. Borsi, L., Balza, E., Carnemolla, B., Sassi, F., Castellani, P., Bernt, A., Kosmehl, H., Biro, A., Siri, A., Orecchia, P., Grassi, J., Neri, D. and Zardi, L. (2003) Selective targeted delivery of TNF-α to tumor blood vessels. Blood 102, 4384-4392 https://doi.org/10.1182/blood-2003-04-1039
  11. Corti, A. (2004) Strategies for improving the anti-neoplastic activity of TNF by tumor targeting. Methods Mol. Med. 98, 247-264
  12. Zhang, X. M., Weber, I. and Chen, M. J. (1992) Site-directed mutational analysis of human tumor necrosis factor- alpha receptor binding site and structure-functional relationship. J. Biol. Chem. 267, 24069-24075
  13. Van Ostade, X., Tavernier, J., Prange, T. and Fiers, W. (1991) Localization of the active site of human tumour necrosis factor (hTNF) by mutational analysis. EMBO J. 10, 827-836
  14. Van Ostade, X., Tavernier, J. and Fiers, W. (1994) Structureactivity studies of human tumor necrosis factors. Protein Eng. 7, 5-22 https://doi.org/10.1093/protein/7.1.5
  15. Shin, H. C. and Cho, K. H. (2005) Mutational analysis of human tumor necrosis factor-α. Biotechnol. Lett. 27, 107-112 https://doi.org/10.1007/s10529-004-6937-y
  16. Seong, J., Maross, C. G., Hunter, N. R., Shin, H. C. and Milas, L. (1997) Potentiation of antitumor efficacy of paclitaxel by recombinant tumor necrosis factor-alpha. Anticancer Drugs 8, 80-87 https://doi.org/10.1097/00001813-199701000-00011
  17. Shin, N. K., Lee, I., Chang, S. G. and Shin, H. C. (1998) A novel tumor necrosis factor-α mutant with significantly enhanced cytotoxicity and receptor binding affinity. Biochem. Mol. Biol. Int. 44, 1075-1082
  18. Cha, S. S., Kim, J. S., Cho, H. S., Shin, N. K., Jeong, W., Shin, H. C., Kim, Y. J., Hahn, J. H. and Oh, B. H. (1998) High resolution crystal structure of a human TNF-α mutant with low systemic toxicity. J. Biol. Chem. 273, 2153-2160 https://doi.org/10.1074/jbc.273.4.2153
  19. Engelmann, H., Holtmann, H., Brakebusch, C., Avni, Y. S., Sarov, I., Nophar, Y., Hadas, E., Leitner, O. and Wallach, D. (1990) Antibodies to a soluble form of a tumor necrosis factor (TNF) receptor have TNF-like activity. J. Biol. Chem. 265, 14497-14504
  20. Espevik, T., Brockhaus, M., Loetscher, H., Nonstad, U. and Schalaby, M. R. (1990) Characterization of binding and biological effects of monoclonal antibodies against a human tumor necrosis factor receptor. J. Exp. Med. 171, 415-426 https://doi.org/10.1084/jem.171.2.415
  21. Schalaby, M. R., Sundan, A., Loetscher, H., Brockhaus, M., Lesslauer, W. and Espevik, T. (1990) Binding and regulation of cellular functions by monoclonal antibodies against human tumor necrosis factor receptors. J. Exp. Med. 172, 1517-1520 https://doi.org/10.1084/jem.172.5.1517
  22. Suganuma, M., Kuzuhara, T., Yamaguchi, K. and Fujiki, H. (2006) Carcinogenic Role of Tumor Necrosis Factor-α Inducing Protein of Helicobacter pylori in Human Stomach. J. Biochem. Mol. Biol. 39, 1-8 https://doi.org/10.5483/BMBRep.2006.39.1.001
  23. Tartaglia, L. A. and Goeddel, D. V. (1992) Two TNF receptors. Immunol. Today 13, 151-153 https://doi.org/10.1016/0167-5699(92)90116-O
  24. Jeong, W, Shin, N. K. and Shin, H. C. (1997) Bacterial chaperones increase the production of soluble human TNF-alpha in Escherichia coli. Biotechnol. Lett. 19, 579-582 https://doi.org/10.1023/A:1018305907918
  25. Creasey, A. A., Doyle, L. V., Reynolds, M. T., Jung, T., Lin, L. S. and Vitt, C. R. (1987) Biological effects of recombinant human tumor necrosis factor and its novel muteins on tumor and normal cell lines. Cancer Res. 47, 145-149
  26. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  27. Eck, M. J. and Sprang, S. R. (1989) The structure of tumor necrosis factor-alpha at 2.6 A resolution. Implications for receptor binding. J. Biol. Chem. 264, 17595-17605
  28. Banner, D. W., D`Arcy, A., Janes, W., Gentz, R., Schoenfeld, H. J., Broger, C., Loetscher, H. and Lesslauer, W. (1993) Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 73, 431-445 https://doi.org/10.1016/0092-8674(93)90132-A
  29. Miyazawa, S. and Jernigan, R. L. (1996) Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J. Mol. Biol. 256, 623-644 https://doi.org/10.1006/jmbi.1996.0114

Cited by

  1. Antitumor activity of TNF-αafter intratumoral injection using anin situthermosensitive hydrogel vol.41, pp.3, 2015, https://doi.org/10.3109/03639045.2013.861480