• Title/Summary/Keyword: left centralizer

Search Result 8, Processing Time 0.019 seconds

MULTIPLICATIVE (GENERALIZED) (𝛼, 𝛽)-DERIVATIONS ON LEFT IDEALS IN PRIME RINGS

  • SHUJAT, FAIZA
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.1_2
    • /
    • pp.1-7
    • /
    • 2022
  • A mapping T : R → R (not necessarily additive) is called multiplicative left 𝛼-centralizer if T(xy) = T(x)𝛼(y) for all x, y ∈ R. A mapping F : R → R (not necessarily additive) is called multiplicative (generalized)(𝛼, 𝛽)-derivation if there exists a map (neither necessarily additive nor derivation) f : R → R such that F(xy) = F(x)𝛼(y) + 𝛽(x)f(y) for all x, y ∈ R, where 𝛼 and 𝛽 are automorphisms on R. The main purpose of this paper is to study some algebraic identities with multiplicative (generalized) (𝛼, 𝛽)-derivations and multiplicative left 𝛼-centralizer on the left ideal of a prime ring R.

ON LEFT α-MULTIPLIERS AND COMMUTATIVITY OF SEMIPRIME RINGS

  • Ali, Shakir;Huang, Shuliang
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • Let R be a ring, and ${\alpha}$ be an endomorphism of R. An additive mapping H : R ${\rightarrow}$ R is called a left ${\alpha}$-multiplier (centralizer) if H(xy) = H(x)${\alpha}$(y) holds for all x,y $\in$ R. In this paper, we shall investigate the commutativity of prime and semiprime rings admitting left ${\alpha}$-multiplier satisfying any one of the properties: (i) H([x,y])-[x,y] = 0, (ii) H([x,y])+[x,y] = 0, (iii) $H(x{\circ}y)-x{\circ}y=0$, (iv) $H(x{\circ}y)+x{\circ}y=0$, (v) H(xy) = xy, (vi) H(xy) = yx, (vii) $H(x^2)=x^2$, (viii) $H(x^2)=-x^2$ for all x, y in some appropriate subset of R.

SOME RESULTS ON CENTRALIZERS OF SEMIPRIME RINGS

  • ANSARI, ABU ZAID
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.3_4
    • /
    • pp.99-105
    • /
    • 2022
  • The objective of this research paper is to prove that an additive mapping T from a semiprime ring R to itself will be centralizer having a suitable torsion restriction on R if it satisfy any one of the following algebraic equations (a) 2T(xnynxn) = T(xn)ynxn + xnynT(xn) (b) 3T(xnynxn) = T(xn)ynxn+xnT(yn)xn+xnynT(xn) for every x, y ∈ R. Further, few extensions of these results are also presented in the framework of *-ring.

Generalized Derivations on ∗-prime Rings

  • Ashraf, Mohammad;Jamal, Malik Rashid
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.3
    • /
    • pp.481-488
    • /
    • 2018
  • Let I be a ${\ast}$-ideal on a 2-torsion free ${\ast}$-prime ring and $F:R{\rightarrow}R$ a generalized derivation with an associated derivation $d:R{\rightarrow}R$. The aim of this paper is to explore the condition under which generalized derivation F becomes a left centralizer i.e., associated derivation d becomes a trivial map (i.e., zero map) on R.

GENERALIZED DERIVATIONS ON PRIME RINGS SATISFYING CERTAIN IDENTITIES

  • Al-Omary, Radwan Mohammed;Nauman, Syed Khalid
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.229-238
    • /
    • 2021
  • Let R be a ring with characteristic different from 2. An additive mapping F : R → R is called a generalized derivation on R if there exists a derivation d : R → R such that F(xy) = F(x)y + xd(y) holds for all x, y ∈ R. In the present paper, we show that if R is a prime ring satisfying certain identities involving a generalized derivation F associated with a derivation d, then R becomes commutative and in some cases d comes out to be zero (i.e., F becomes a left centralizer). We provide some counter examples to justify that the restrictions imposed in the hypotheses of our theorems are not superfluous.

SEMIPRIME RINGS WITH INVOLUTION AND CENTRALIZERS

  • ANSARI, ABU ZAID;SHUJAT, FAIZA
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.709-717
    • /
    • 2022
  • The objective of this research is to prove that an additive mapping T : R → R is a left as well as right centralizer on R if it satisfies any one of the following identities: (i) T(xnyn + ynxn) = T(xn)yn + ynT(xn) (ii) 2T(xnyn) = T(xn)yn + ynT(xn) for each x, y ∈ R, where n ≥ 1 is a fixed integer and R is any n!-torsion free semiprime ring. In addition, we talk over above identities in the setting of *-ring(ring with involution).

Commutativity Criteria for a Factor Ring R/P Arising from P-Centralizers

  • Lahcen Oukhtite;Karim Bouchannafa;My Abdallah Idrissi
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.551-560
    • /
    • 2023
  • In this paper we consider a more general class of centralizers called I-centralizers. More precisely, given a prime ideal P of an arbitrary ring R we establish a connection between certain algebraic identities involving a pair of P-left centralizers and the structure of the factor ring R/P.