DOI QR코드

DOI QR Code

JORDAN HIGHER CENTRALIZERS ON SEMIPRIME RINGS AND RELATED MAPPINGS

  • Received : 2014.04.30
  • Accepted : 2014.06.17
  • Published : 2014.09.25

Abstract

We prove that every Jordan higher left (right) centralizer on a 2-torsion free semiprime ring is a higher left (right) centralizer which is to generalize the result of Zalar [18].

Keywords

References

  1. M. Ashraf, N. Rehman and S. Ali, On Jordan left derivations of Lie ideals in prime rings, Southeast Asian Bull. Math. 25(3) (2001), 379-382. https://doi.org/10.1007/s100120100000
  2. M. Ashraf and N. Rehman and Shakir Ali, On Lie ideals and Jordan generalized derivations of prime rings, Indian J. pure appl. Math. 34(2) (2003), 291-294.
  3. M. Bresar, On the distance of the compositions of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), 89-93. https://doi.org/10.1017/S0017089500008077
  4. M. Bresar, Jordan mappings of semiprime rings, J. Algebra, 127 (1989), 218-228. https://doi.org/10.1016/0021-8693(89)90285-8
  5. M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006. https://doi.org/10.1090/S0002-9939-1988-0929422-1
  6. M. Bresar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 10 (1990), 7-16.
  7. W. Cortes and C. Haetinger, On Jordan generalized higher derivations in rings, Turkish J. Math. 29 (2005), 1-10.
  8. Q. Deng, On Jordan left derivations, Math. J. Okayama Univ. 34 (1997), 145-147.
  9. M. Ferrero and C. Haetinger, Higher derivations and a theorem by Herstein, Quaestiones Mathematicae 25(2) (2002), 249-257. https://doi.org/10.2989/16073600209486012
  10. I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110. https://doi.org/10.1090/S0002-9939-1957-0095864-2
  11. B. Hvala, Generalized derivations in rings, Comm. Algebra 26(4) (1998), 1147-1166. https://doi.org/10.1080/00927879808826190
  12. W. Jing and S. Lu, Generalized Jordan derivations on prime rings and standard operator algebras, Taiwanese J. Math. 7(4) (2003), 605-613. https://doi.org/10.11650/twjm/1500407580
  13. P. Ribenboim, Higher order derivations of modules, Portgaliae Math. 39 (1980), 381-397.
  14. M. A. Quadri, M. Shadab Khan and N. Rehman, Generalized derivations and commutativity of prime rings, Indian J. Pure Appl. Math. 34(9) (2003), 1393-1396.
  15. J. Vukman, Jordan left derivations on semiprime rings, Math. J. Okayama Univ. 39 (1997), 1-6.
  16. J. Vukman, A note on generalized derivations of semiprime rings, Taiwanese J. Math. 11(2) (2007), 367-370. https://doi.org/10.11650/twjm/1500404694
  17. F. Wei and Z. Xiao, Generalized Jordan triple higher derivations on rings, B. Korean Math. Soc. 46(3) (2009), 553-565 . https://doi.org/10.4134/BKMS.2009.46.3.553
  18. B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32(4) (1991), 609-614.