KYUNGPOOK Math. J. 63(2023), 551-560 https://doi.org/10.5666/KMJ.2023.63.4.551 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Commutativity Criteria for a Factor Ring R/P Arising from P-Centralizers

LAHCEN OUKHTITE* AND KARIM BOUCHANNAFA

Department of Mathematics, Faculty of Sciences and Technology, S. M. Ben Abdellah University, Fez, Morocco

e-mail: oukhtitel@hotmail.com and bouchannafa.k@gmail.com

My Abdallah Idrissi

Department of Mathematics and informatics, Polydisciplinary Faculty, Box 592, Sultan Moulay Slimane University, Beni Mellal, Morocco

 $e ext{-}mail: myabdallahidrissi@gmail.com}$

ABSTRACT. In this paper we consider a more general class of centralizers called I-centralizers. More precisely, given a prime ideal P of an arbitrary ring R we establish a connection between certain algebraic identities involving a pair of P-left centralizers and the structure of the factor ring R/P.

1. Introduction

Throughout this paper, R will be a ring with center Z(R). Let $x,y \in R$. The commutator xy - yx will be denoted by [x,y] and the anti-commutator xy + yx will be represented by $x \circ y$. Recall that an ideal P of R is prime if for all $x,y \in R$, $xRy \subseteq P$ implies $x \in P$ or $y \in P$. An additive mapping $d:R \longrightarrow R$ is called a derivation if d(xy) = d(x)y + xd(y) holds for all $x,y \in R$. An additive mapping $F:R \longrightarrow R$ is called a generalized derivation if there exists a derivation $d:R \longrightarrow R$ such that F(xy) = F(x)y + xd(y) for all $x,y \in R$, and d is called the associated derivation of F. During the past few decades, there has been an ongoing interest concerning the relationship between the commutativity of a ring and the existence of certain specific types of derivations of R.

An additive mapping $T: R \to R$ is said to be a left centralizer (resp. right centralizer) of R if T(xy) = T(x)y (resp. T(xy) = xT(y)) for all $x, y \in R$. An additive mapping T is called a centralizer in case T is a left and a right centralizer of R. In

Received September 5, 2022; revised March 15, 2023; accepted March 21, 2023. 2020 Mathematics Subject Classification: 16N60, 16U80.

Key words and phrases: Prime ring, Prime ideal, P-centralizer, Commutativity.

^{*} Corresponding Author.

ring theory it is more common to work with module homomorphisms. Ring theorists would write that $T:R_R\to R_R$ is a homomorphism of a ring module R into itself. For a semi-prime ring R all such homomorphisms are of the form T(x)=qx for all $x\in R$, where q is an element of Martindale left ring of quotients Q_r (see [5, Chapter 2]). If R has the identity element then $T:R\to R$ is a left centralizer if T is of the form T(x)=ax for all $x\in R$ and some fixed element $a\in R$. Recently there has been a great interest in the study of the relationship between the commutativity of a ring and some specific additive mappings defined on the considered ring. In this direction, several authors have studied this problem by considering left (respectively right) centralizers in prime and semi-prime rings (see for example [1, 2, 6, 7], where further references can be found).

In the following definition, we have initiated the concept of I-centralizers in rings, where I is an ideal, and extended several known results.

Definition. Let I be an ideal of a ring R and $f: R \longrightarrow R$ an additive mapping.

- (1) f is called an I-left centralizer if $f(xy) f(x)y \in I$ for all $x, y \in R$.
- (2) f is called an I-right centralizer if $f(xy) xf(y) \in I$ for all $x, y \in R$.
- (3) f is called an I-centralizer if and only if f is both an I-left centralizer and I-right centralizer.

Example.

- (1) The zero function Θ_R is an *I*-centralizer on R.
- (2) The I_d and $-I_d$ are I-left centralizers (resp. I-right centralizers) on R, where I_d denotes the identity function.
- (3) Consider the ring $R = \left\{ \begin{pmatrix} x & y & 0 \\ 0 & 0 & 0 \\ 0 & z & 0 \end{pmatrix} \middle| x, y, z \in \mathbb{Z} \right\}$. Let I be the nonzero ideal of R defined by $I = \left\{ \begin{pmatrix} \alpha & \beta & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \middle| \alpha, \beta \in \mathbb{Z} \right\}$. It is easy to verify that the additive mapping $T: R \to R$ defined by:

$$T \begin{pmatrix} x & y & 0 \\ 0 & 0 & 0 \\ 0 & z & 0 \end{pmatrix} = \begin{pmatrix} z & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

is an I-centralizer but T is not a centralizer.

The main goal of this work is to continue on this line of investigation and study the relationship between the structure of quotient rings R/P and the behavior of P-centralizers satisfying specific algebraic identities.

In the sequel, we shall make some use of the following well-known result.

Fact 1.1. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \subsetneq I$. If $aIb \subseteq P$ for all $a, b \in R$, then $a \in P$ or $b \in P$.

Fact 1.2. Let R be a semi-prime ring, I a nonzero ideal of R and $a \in I$ such that aIa = 0, then a = 0.

2. Identities Involving a Pair of Left P-Centralizers

In what follows, \overline{x} for x in R denotes x + P in R/P.

In [4, Theorem 2.3], Aydin proved that if R is a non-commutative prime ring, F a generalized derivation of R associated with a nonzero derivation d and $a \notin Z(R)$ such that F(x)a = aF(x) for all $x \in I$, then $d(x) = \lambda[x, a]$, for all $x \in I$, where I is an ideal of R.

Inspired by the above result, we here consider a more general algebraic identity involving two P-left centralizers by omitting the primeness assumption imposed on the ring R.

Theorem 2.1. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \subsetneq I$. Suppose that T_1 and T_2 are two P-left centralizers on R, satisfying the condition $\overline{T_1(x)a - aT_2(x)} \in Z(R/P)$ for all $x \in I$, where $a \in R$, then one of the following assertions holds:

- (1) $T_1(R) \subseteq P$ and $aT_2(R) \subseteq P$;
- (2) R/P is a commutative integral domain;
- (3) $[a,R] \subset P$.

Proof. By assumption, we have

(2.1)
$$[T_1(x)a - aT_2(x), r] \in P \text{ for all } r, x \in I.$$

Replacing x by xy in (2.1), we obtain

$$[T_1(x)ya, r] - [aT_2(x)y, r] \in P$$
 for all $r, x, y \in I$

in such a way that

$$(2.2) (T_1(x)a - aT_2(x))[y, r] + [T_1(x)[y, a], r] \in P for all r, x, y \in I.$$

Substituting yr for y in (2.2), we get

$$[T_1(x)y[r,a],r] \in P$$
 for all $r, x, y \in I$.

That is

(2.3)
$$T_1(x)y[[r,a],r] + [T_1(x),r]y[r,a] + T_1(x)[y,r][r,a] \in P$$
 for all $r, x, y \in I$.

Putting $T_1(x)y$ instead of y in (2.3) and using it, one can see that

$$[T_1(x), r]T_1(x)y[r, a] \in P$$
 for all $r, x, y \in I$.

According to Fact 1.1, we obtain for each $r \in I$, either $[T_1(x), r]T_1(x) \in P$ or $[r, a] \in P$. Define $A = \{r \in I / [T_1(x), r]T_1(x) \in P \text{ for all } x \in I\}$ and $B = \{r \in I / [r, a] \in P\}$. Clearly, A and B are additive subgroups of I whose union is I. Hence by Brauer's trick, we have either A = I or B = I.

In the second case, namely $[I,a] \subseteq P$. Since $RI \subseteq I$, then $[R,a] \subseteq P$.

Now consider A = I, in this situation

$$[T_1(x), r]T_1(x) \in P$$
 for all $r, x \in I$.

Substituting sr for r in the above expression, we arrive at

$$[T_1(x), s]rT_1(x) \in P \text{ for all } r, s, x \in I.$$

Right multiplying the above equation by s and combining it with (2.4), it follows that

$$[T_1(x), s]I[T_1(x), s] \subseteq P$$
 for all $s, x \in I$.

Applying Fact 1.2, we conclude that $\overline{T_1(x)} \in Z(R/P)$ for all $x \in I$. Writing xt for x in the last expression, where $t \in R$, we arrive at $\overline{t} \in Z(R/P)$ or $\overline{T_1(x)} = \overline{0}$. i.e., R/P is commutative or $T_1(R) \subseteq P$ and our hypothesis reduces to

$$[r, aT_2(x)] \in P$$
 for all $r, x \in I$

which means that

(2.5)
$$a[r, T_2(x)] + [r, a]T_2(x) \in P \text{ for all } r, x \in I.$$

Replacing x by xt in (2.5), on can see that

(2.6)
$$a[r, T_2(x)]t + aT_2(x)[r, t] + [r, a]T_2(x)t \in P$$
 for all $x, t \in I$.

Right multiplying (2.5) by t and subtracting it from (2.6), we get

$$aT_2(x)[r,t] \in P \text{ for all } r,t,x \in I.$$

Substituting r by ru in (2.7) and employing it, we obtain

(2.8)
$$aT_2(x)I[u,t] \subseteq P \text{ for all } t, u, x \in I.$$

Once again invoking Fact 1.1, it follows from equation (2.8) that $aT_2(R) \subseteq P$ or $[R, R] \subseteq P$. Finally, we have either $(T_1(R) \subseteq P \text{ and } aT_2(R) \subseteq P)$ or $[a, R] \subseteq P$. \square

As an application of our Theorem, we get the following result.

Corollary 2.2. Let R be a non-commutative prime ring and I a nonzero ideal of R. Suppose that T_1 and T_2 are two left centralizers on R such that $T_1(x)a \pm aT_2(x) \in Z(R)$ for all $x \in I$, where $a \notin Z(R)$, then $T_1 = 0$ and $aT_2 = 0$.

In [3, Theorem 2.1], it is showed that if a prime ring R admits a nonzero left centralizer T, with $T(x) \neq x$ for all x in a nonzero ideal I of R, such that T([x,y]) = [x,y] for all $x,y \in I$, then R must be commutative. The author in [8] with addition of 2-torsion freeness hypothesis, extended the preceding result to a Jordan ideal.

Motivated by the preceding results we investigate a more general context which allows us to generalize the above result in two ways. First of all, we will assume that T([x,y]) belong to center of R/P rather than T([x,y]) = 0. Secondly we will investigate the behavior of the more general expression $T_1(xy) - T_2(yx) \in Z(R/P)$ involving two P-left centralizers instead of the expression T(xy) - T(yx) = 0.

Theorem 2.3. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \subsetneq I$. Suppose that T_1 and T_2 are two P-left centralizers on R, then the following assertions are equivalent:

- (1) $\overline{T_1(xy) T_2(yx)} \in Z(R/P)$ for all $x, y \in I$;
- (2) $(T_1(R) \subseteq P \text{ and } T_2(R) \subseteq P) \text{ or } R/P \text{ is a commutative integral domain.}$

Proof. By given assumption, we have

(2.9)
$$\overline{T_1(xy) - T_2(yx)} \in Z(R/P) \text{ for all } x, y \in I.$$

Substituting yr for y in (2.9), and by expanding this equation, we get

$$[T_2(y)[x,r],r] \in P \text{ for all } r, x, y \in I.$$

Replacing y by $yT_2(y)$ in (2.10), we find that

$$(2.11) T_2(y)[T_2(y)[x,r],r] + [T_2(y),r]T_2(y)[x,r] \in P \text{ for all } r, x, y \in I.$$

In light of (2.10), Eq. (2.11) yields

(2.12)
$$[T_2(y), r]T_2(y)[x, r] \in P \text{ for all } r, x, y \in I.$$

Writing tx for x in (2.12), one can easily to see that

$$[T_2(y), r]T_2(y)t[x, r] \in P$$
 for all $r, t, x, y \in I$.

According to Fact 1.1, we obtain either R/P is an integral domain or $[T_2(y), r]T_2(y) \in P$ for all $r, y \in I$. Arguing as above, the last relation assures that $T_2(y) \in Z(R/P)$ for all $y \in I$ and our hypothesis becomes

(2.13)
$$T_1(x)[y,x] + [T_1(x),x]y \in P \text{ for all } x,y \in I.$$

Putting yu instead of y in (2.13), we get

$$T_1(x)y[u,x] \in P$$
 for all $u,x,y \in I$.

By the primeness of P, we conclude that $T_1(R) \subseteq P$ or R/P is an integral domain. Now if $T_1(R) \subseteq P$, then equation (2.9) yields $\overline{T_2(y)x} \in Z(R/P)$ for all $x, y \in I$. Commuting this expression with r, we find that $T_2(y)I[x,r] \subseteq P$. Once again applying Fact 1.1, it follows that $T_2(R) \subseteq P$ or R/P is a commutative integral domain.

As an application of Theorem 2.3, the following corollary gives a generalization of some results in [3, 8].

Corollary 2.4. Let R be a prime ring and I a nonzero ideal of R. Suppose that T_1 and T_2 are nonzero two left centralizers on R, then the following assertions are equivalent:

- (1) $T_1(xy) \pm T_2(yx) \in Z(R)$ for all $x, y \in I$;
- (2) R is a commutative integral domain.

Corollary 2.5. Let R be a prime ring and I a nonzero ideal of R. Suppose that T is a nonzero left centralizer on R, then the following assertions are equivalent:

- (1) $T([x,y]) \in Z(R)$ for all $x,y \in I$;
- (2) $T(x \circ y) \in Z(R)$ for all $x, y \in I$;
- (3) R is a commutative integral domain.

In [3, Theorems 3.1 and 3.3], it is proved that a prime ring R must be a commutative integral domain if it admits a non trivial left centralizer T such that $T(xy) - xy \in Z(R)$ or $T(xy) - yx \in Z(R)$ for all x, y in a nonzero ideal I of R. This result can be obtained as an immediate application of Corollary 2.5.

Corollary 2.6. Let R be a prime ring and I a nonzero ideal of R. Suppose that T is a non trivial left centralizer on R, then the following assertions are equivalent:

- (1) $T(xy) \pm xy \in Z(R)$ for all $x, y \in I$;
- (2) $T(xy) \pm yx \in Z(R)$ for all $x, y \in I$;
- (3) R is a commutative integral domain.

The following theorem exhibits a connection between the commutativity of R/P and range inclusion results of a pair of P-left centralizers.

Theorem 2.7. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \subsetneq I$. If T_1 and T_2 are two P-left centralizers on R, then the following assertions are equivalent:

- (1) $\overline{T_1(x)T_2(x)} \in Z(R/P)$ for all $x \in I$;
- (2) $T_1(R) \subseteq P$ or $T_2(R) \subseteq P$ or R/P is a commutative integral domain.

Proof. For non-trivial implications. Assume that

(2.14)
$$\overline{T_1(x)T_2(x)} \in Z(R/P) \text{ for all } x \in I.$$

A Linearization of (2.14) gives

$$\overline{T_1(x)T_2(y) + T_1(y)T_2(x)} \in Z(R/P)$$
 for all $x, y \in I$.

This means that

$$(2.15) [T_1(x), r]T_2(y) + T_1(x)[T_2(y), r] + T_1(y)[T_2(x), r] + [T_1(y), r]T_2(x) \in P$$
for all $r, x, y \in I$.

Substituting $yT_2(x)$ for y in (2.15) and combining it from the above expression, we get

$$(2.16) (T_1(x)T_2(y) + T_1(y)T_2(x))[T_2(x), r] \in P for all r, x, y \in I.$$

Putting tr instead of r in (2.16), we obtain

$$(T_1(x)T_2(y) + T_1(y)T_2(x))t[T_2(x), r] \in P$$
 for all $r, t, x, y \in I$.

In view of the primeness of P, we find that either $T_1(x)T_2(y) + T_1(y)T_2(x) \in P$ for all $x, y \in I$ or $[T_2(x), r] \in P$ for all $r, x \in I$.

In the latter case, taking x = xs, it is obviously to see that

$$(2.17) T_2(x)[s,r] \in P for all r,s,x \in I.$$

Writing xu for x and using Fact 1.1, we arrive at $T_2(R) \subseteq P$ or R/P is commutative. Now consider the first case, i.e., $T_1(x)T_2(y) + T_1(y)T_2(x) \in P$ for all $x, y \in I$. Replacing y by yw in this equation, it follows that $T_1(y)(T_2(x)w - wT_2(x)) \in P$ for all $w, x, y \in I$. Thereby obtaining,

$$T_1(y)z(T_2(x)w - wT_2(x)) \in P$$
 for all $w, x, y, z \in I$.

Therefore, either $T_1(R) \subseteq P$ or $T_2(x)w - wT_2(x) \in P$ for all $w, x \in I$. In the last case, putting x = xy, we easily get $T_2(x)[w, y] \in P$ for all $w, x, y \in I$ proving that $T_2(R) \subseteq P$ or R/P is an integral domain.

Corollary 2.8. Let R be a prime ring and I a nonzero ideal of R. If T_1 and T_2 are two nonzero left centralizers on R such that $T_1(x)T_2(x) \in Z(R)$ for all $x \in I$, then R is a commutative integral domain.

Theorem 2.9. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \subsetneq I$. If T_1 and T_2 are two P-left centralizers on R, then the following assertions are equivalent:

- (1) $\overline{[T_1(x), T_2(y)]} \in Z(R/P)$ for all $x, y \in I$;
- (2) $\overline{T_1(x) \circ T_2(y)} \in Z(R/P)$ for all $x, y \in I$;
- (3) $T_1(R) \subseteq P$ or $T_2(R) \subseteq P$ or R/P is a commutative integral domain.

Proof. We only need to prove $(1) \Longrightarrow (3)$ and $(2) \Longrightarrow (3)$.

 $(1) \Longrightarrow (3)$ For all $x, y \in I$, we suppose that

(2.18)
$$\overline{[T_1(x), T_2(y)]} \in Z(R/P).$$

This may be rewritten as

(2.19)
$$[T_1(x), T_2(y)], r \in P \text{ for all } r, x, y \in I.$$

Analogously, replacing yt for y, where $t \in R$ in (2.19), and by appropriate expansion, get

$$[T_1(x), T_2(y)][t, r] + T_2(y)[T_1(x), t], r] + [T_2(y), r][T_1(x), t] \in P.$$

Letting $t = T_1(x)$ in (2.20), one can see that

$$[T_1(x), T_2(y)][T_1(x), r] \in P$$
 for all $r, x, y \in I$.

Keeping in mind that $\overline{[T_1(x),T_2(y)]} \in Z(R/P)$, we get

$$[T_1(x), T_2(y)]I[T_1(x), r] \subseteq P \text{ for all } r, x, y \in I.$$

In light of the primeness of P, we find that either $[T_1(x), T_2(y)] \in P$ or $[T_1(x), r] \in P$ for all $x \in I$. Consequently, I is a union of two additive subgroups I_1 and I_2 , where

$$I_1 = \{x \in I / [T_1(x), T_2(y)] \in P \text{ for all } y \in I\} \text{ and } I_2 = \{x \in I / [T_1(x), I] \subseteq P\}.$$

According to Brauer's trick, we are forced to conclude that either $I = I_1$ or $I = I_2$. If $I = I_1$, i.e. $[T_1(x), T_2(y)] \in P$ for all $x, y \in I$, then replacing y by ys, one obtains

(2.22)
$$T_2(y)[T_1(x), s] \in P \text{ for all } s, x, y \in I.$$

Substituting yu for y in (2.22), we obviously get

$$T_2(y)u[T_1(x), s] \in P$$
 for all $s, u, x, y \in I$.

So again an appeal to Fact 1.1, gives either $T_2(R) \subseteq P$ or $[T_1(x), s] \in P$ for all $x, s \in I$.

Now if $I = I_2$, that is $[T_1(x), r] \in P$ for all $x, r \in I$, then putting xw instead of x, we obtain

$$(2.23) T_1(x)[z,r] \in P \text{ for all } x,y,z \in I.$$

Writing xw for x in (2.23), we get

$$T_1(x)w[z,r] \in P$$
 for all $r, w, x, z \in I$.

Accordingly, it follows that $T_1(R) \subseteq P$ or R/P is a commutative integral domain. (2) \Longrightarrow (3) Can be proved by using the same steps as we did before.

Corollary 2.10. Let R be a prime ring and I a nonzero ideal of R. If T_1 and T_2 are two nonzero left centralizers on R, then the following assertions are equivalent:

- (1) $[T_1(x), T_2(y)] \in Z(R)$ for all $x, y \in I$;
- (2) $T_1(x) \circ T_2(y) \in Z(R)$ for all $x, y \in I$;
- (3) R is a commutative integral domain.

Using similar arguments as above with necessary variation, we can prove the following theorem.

Theorem 2.11. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \subsetneq I$. Suppose that T_1 and T_2 are two P-left centralizers on I of R, then the following assertions are equivalent:

- (1) $\overline{T_1(x)T_2(y) [x,y]} \in Z(R/P)$ for all $x, y \in I$;
- (2) $\overline{T_1(x)T_2(y) x \circ y} \in Z(R/P)$ for all $x, y \in I$;
- (3) R/P is a commutative integral domain.

Let R be a prime ring. Letting P = (0) in the previous theorem, we deduce that, if $T_1(x)T_2(y) - [x,y] \in Z(R)$ or $T_1(x)T_2(y) - x \circ y \in Z(R)$ for all $x,y \in I$, then R is commutative. The following corollary shows that the same conclusion remains satisfied for semi-prime rings.

Corollary 2.12. Let R be a semi-prime ring and I a nonzero ideal of R. Suppose that T_1 and T_2 are two left centralizers on R, then the following assertions are equivalent:

- (1) $T_1(x)T_2(y) \pm [x,y] \in Z(R)$ for all $x,y \in I$;
- (2) $T_1(x)T_2(y) \pm x \circ y \in Z(R)$ for all $x, y \in I$;
- (3) R is commutative.

Proof. We have only to prove $(1) \Longrightarrow (3)$, while the implication $(2) \Longrightarrow (3)$ can be proved similarly. The ring R is semi-prime, then there exists a family \mathcal{P} of prime ideals such that $\bigcap_{P \in \mathcal{P}} P = (0)$. Then we may suppose existence of a two left centralizers T_1 and T_2 satisfying $T_1(x)T_2(y) \pm [x,y] \in Z(R)$ for all $x,y \in I$. Thereby obtaining, $[T_1(x)T_2(y)\pm [x,y],r] = 0 \in \bigcap_{P \in \mathcal{P}} P$ for all $r,x,y \in I$, therefore, Theorem 2.11 yields that for all $P \in \mathcal{P}$, R/P is commutative which, because of $\bigcap_{P \in \mathcal{P}} P = (0)$, assures that R is commutative.

References

- [1] A. Abbasi, M. S. Khan and M. R. Mozumder, On commutativity and centralizers of prime ring with involution, Thai J. Math., 20(3)(2022), 1329–1335.
- [2] A. Z. Ansari and F. Shujat, Additive mappings on semiprime rings functioning as centralizers, Aust. J. Math. Anal. Appl., 19(2)(2022), Art. 11, 9 pp.
- [3] M. Ashraf and S. Ali, On left multipliers and the commutativity of prime rings, Demonstratio Math., 41(4)(2008), 763–771.
- [4] N. Aydin, A note on generalized derivations of prime rings, Int. J. Algebra, 5(2011), 17–23.
- [5] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with generalized identities, Monogr. Textbooks Pure Appl. Math. 196, Marcel Dekker, Inc., New York, 1996, xiv+522 pp.
- [6] M. Fošner and B. Marcen, A new equation related to two-sided centralizers in prime rings, Aequationes Math., **96(6)**(2022), 1207–1219.
- [7] M. Fošner, B. Marcen and J. Vukman, On functional equation related to (m, n)-Jordan centralizers in prime rings, Bull. Malays. Math. Sci. Soc., 42(6)(2019), 3131-3147.
- [8] L. Oukhtite, Left multipliers and Jordan ideals in rings with involution, Afr. Diaspora J. Math., 11(1)(2011), 24–28.