KYUNGPOOK Math. J. 63(2023), 551-560
https://doi.org/10.5666/KMJ.2023.63.4.551
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

Commutativity Criteria for a Factor Ring R / P Arising from P-Centralizers

Lahcen Oukhtite* and Karim Bouchannafa
Department of Mathematics, Faculty of Sciences and Technology, S. M. Ben Abdellah University, Fez, Morocco
e-mail: oukhtitel@hotmail.com and bouchannafa.k@gmail.com

My Abdallah Idrissi
Department of Mathematics and informatics, Polydisciplinary Faculty, Box 592, Sultan Moulay Slimane University, Beni Mellal, Morocco
e-mail: myabdallahidrissi@gmail.com
AbSTRACT. In this paper we consider a more general class of centralizers called I centralizers. More precisely, given a prime ideal P of an arbitrary ring R we establish a connection between certain algebraic identities involving a pair of P-left centralizers and the structure of the factor ring R / P.

1. Introduction

Throughout this paper, R will be a ring with center $Z(R)$. Let $x, y \in R$. The commutator $x y-y x$ will be denoted by $[x, y]$ and the anti-commutator $x y+y x$ will be represented by $x \circ y$. Recall that an ideal P of R is prime if for all $x, y \in R$, $x R y \subseteq P$ implies $x \in P$ or $y \in P$. An additive mapping $d: R \longrightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R$. An additive mapping $F: R \longrightarrow R$ is called a generalized derivation if there exists a derivation $d: R \longrightarrow R$ such that $F(x y)=F(x) y+x d(y)$ for all $x, y \in R$, and d is called the associated derivation of F. During the past few decades, there has been an ongoing interest concerning the relationship between the commutativity of a ring and the existence of certain specific types of derivations of R.
An additive mapping $T: R \rightarrow R$ is said to be a left centralizer (resp. right centralizer) of R if $T(x y)=T(x) y$ (resp. $T(x y)=x T(y))$ for all $x, y \in R$. An additive mapping T is called a centralizer in case T is a left and a right centralizer of R. In

* Corresponding Author.

Received September 5, 2022; revised March 15, 2023; accepted March 21, 2023.
2020 Mathematics Subject Classification: 16N60, 16U80.
Key words and phrases: Prime ring, Prime ideal, P-centralizer, Commutativity.
ring theory it is more common to work with module homomorphisms. Ring theorists would write that $T: R_{R} \rightarrow R_{R}$ is a homomorphism of a ring module R into itself. For a semi-prime ring R all such homomorphisms are of the form $T(x)=q x$ for all $x \in R$, where q is an element of Martindale left ring of quotients Q_{r} (see [5, Chapter 2]). If R has the identity element then $T: R \rightarrow R$ is a left centralizer if T is of the form $T(x)=a x$ for all $x \in R$ and some fixed element $a \in R$. Recently there has been a great interest in the study of the relationship between the commutativity of a ring and some specific additive mappings defined on the considered ring. In this direction, several authors have studied this problem by considering left (respectively right) centralizers in prime and semi-prime rings (see for example $[1,2,6,7]$, where further references can be found).

In the following definition, we have initiated the concept of I-centralizers in rings, where I is an ideal, and extended several known results.

Definition. Let I be an ideal of a ring R and $f: R \longrightarrow R$ an additive mapping.
(1) f is called an I-left centralizer if $f(x y)-f(x) y \in I$ for all $x, y \in R$.
(2) f is called an I-right centralizer if $f(x y)-x f(y) \in I$ for all $x, y \in R$.
(3) f is called an I-centralizer if and only if f is both an I-left centralizer and I-right centralizer.

Example.

(1) The zero function Θ_{R} is an I-centralizer on R.
(2) The I_{d} and $-I_{d}$ are I-left centralizers (resp. I-right centralizers) on R, where I_{d} denotes the identity function.
(3) Consider the ring $R=\left\{\left.\left(\begin{array}{lll}x & y & 0 \\ 0 & 0 & 0 \\ 0 & z & 0\end{array}\right) \right\rvert\, x, y, z \in \mathbb{Z}\right\}$. Let I be the nonzero ideal of R defined by $I=\left\{\left.\left(\begin{array}{ccc}\alpha & \beta & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{Z}\right\}$. It is easy to verify that the additive mapping $T: R \rightarrow R$ defined by:

$$
T\left(\begin{array}{lll}
x & y & 0 \\
0 & 0 & 0 \\
0 & z & 0
\end{array}\right)=\left(\begin{array}{lll}
z & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

is an I-centralizer but T is not a centralizer.
The main goal of this work is to continue on this line of investigation and study the relationship between the structure of quotient rings R / P and the behavior of P-centralizers satisfying specific algebraic identities.

In the sequel, we shall make some use of the following well-known result.

Fact 1.1. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \varsubsetneqq I$. If $a I b \subseteq P$ for all $a, b \in R$, then $a \in P$ or $b \in P$.

Fact 1.2. Let R be a semi-prime ring, I a nonzero ideal of R and $a \in I$ such that $a I a=0$, then $a=0$.

2. Identities Involving a Pair of Left P-Centralizers

In what follows, \bar{x} for x in R denotes $x+P$ in R / P.
In [4, Theorem 2.3], Aydin proved that if R is a non-commutative prime ring, F a generalized derivation of R associated with a nonzero derivation d and $a \notin Z(R)$ such that $F(x) a=a F(x)$ for all $x \in I$, then $d(x)=\lambda[x, a]$, for all $x \in I$, where I is an ideal of R.

Inspired by the above result, we here consider a more general algebraic identity involving two P-left centralizers by omitting the primeness assumption imposed on the ring R.

Theorem 2.1. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \nsubseteq I$. Suppose that T_{1} and T_{2} are two P-left centralizers on R, satisfying the condition $\overline{T_{1}(x) a-a T_{2}(x)} \in Z(R / P)$ for all $x \in I$, where $a \in R$, then one of the following assertions holds:
(1) $T_{1}(R) \subseteq P$ and $a T_{2}(R) \subseteq P$;
(2) R / P is a commutative integral domain;
(3) $[a, R] \subset P$.

Proof. By assumption, we have

$$
\begin{equation*}
\left[T_{1}(x) a-a T_{2}(x), r\right] \in P \text { for all } r, x \in I \tag{2.1}
\end{equation*}
$$

Replacing x by $x y$ in (2.1), we obtain

$$
\left[T_{1}(x) y a, r\right]-\left[a T_{2}(x) y, r\right] \in P \text { for all } r, x, y \in I
$$

in such a way that

$$
\begin{equation*}
\left(T_{1}(x) a-a T_{2}(x)\right)[y, r]+\left[T_{1}(x)[y, a], r\right] \in P \text { for all } r, x, y \in I \tag{2.2}
\end{equation*}
$$

Substituting $y r$ for y in (2.2), we get

$$
\left[T_{1}(x) y[r, a], r\right] \in P \text { for all } r, x, y \in I
$$

That is

$$
\begin{equation*}
T_{1}(x) y[[r, a], r]+\left[T_{1}(x), r\right] y[r, a]+T_{1}(x)[y, r][r, a] \in P \text { for all } r, x, y \in I \tag{2.3}
\end{equation*}
$$

Putting $T_{1}(x) y$ instead of y in (2.3) and using it, one can see that

$$
\left[T_{1}(x), r\right] T_{1}(x) y[r, a] \in P \text { for all } r, x, y \in I
$$

According to Fact 1.1, we obtain for each $r \in I$, either $\left[T_{1}(x), r\right] T_{1}(x) \in P$ or $[r, a] \in P$. Define $A=\left\{r \in I /\left[T_{1}(x), r\right] T_{1}(x) \in P\right.$ for all $\left.x \in I\right\}$ and $B=\{r \in$ $I /[r, a] \in P\}$. Clearly, A and B are additive subgroups of I whose union is I. Hence by Brauer's trick, we have either $A=I$ or $B=I$.
In the second case, namely $[I, a] \subseteq P$. Since $R I \subseteq I$, then $[R, a] \subseteq P$.
Now consider $A=I$, in this situation

$$
\left[T_{1}(x), r\right] T_{1}(x) \in P \text { for all } r, x \in I
$$

Substituting $s r$ for r in the above expression, we arrive at

$$
\begin{equation*}
\left[T_{1}(x), s\right] r T_{1}(x) \in P \text { for all } r, s, x \in I \tag{2.4}
\end{equation*}
$$

Right multiplying the above equation by s and combining it with (2.4), it follows that

$$
\left[T_{1}(x), s\right] I\left[T_{1}(x), s\right] \subseteq P \text { for all } s, x \in I
$$

Applying Fact 1.2 , we conclude that $\overline{T_{1}(x)} \in Z(R / P)$ for all $x \in I$. Writing $x t$ for x in the last expression, where $t \in R$, we arrive at $\bar{t} \in Z(R / P)$ or $\overline{T_{1}(x)}=\overline{0}$. i.e., R / P is commutative or $T_{1}(R) \subseteq P$ and our hypothesis reduces to

$$
\left[r, a T_{2}(x)\right] \in P \text { for all } r, x \in I
$$

which means that

$$
\begin{equation*}
a\left[r, T_{2}(x)\right]+[r, a] T_{2}(x) \in P \text { for all } r, x \in I \tag{2.5}
\end{equation*}
$$

Replacing x by $x t$ in (2.5), on can see that

$$
\begin{equation*}
a\left[r, T_{2}(x)\right] t+a T_{2}(x)[r, t]+[r, a] T_{2}(x) t \in P \quad \text { for all } x, t \in I \tag{2.6}
\end{equation*}
$$

Right multiplying (2.5) by t and subtracting it from (2.6), we get

$$
\begin{equation*}
a T_{2}(x)[r, t] \in P \text { for all } r, t, x \in I \tag{2.7}
\end{equation*}
$$

Substituting r by $r u$ in (2.7) and employing it, we obtain

$$
\begin{equation*}
a T_{2}(x) I[u, t] \subseteq P \text { for all } t, u, x \in I \tag{2.8}
\end{equation*}
$$

Once again invoking Fact 1.1, it follows from equation (2.8) that $a T_{2}(R) \subseteq P$ or $[R, R] \subseteq P$. Finally, we have either $\left(T_{1}(R) \subseteq P\right.$ and $\left.a T_{2}(R) \subseteq P\right)$ or $[a, R] \subseteq P$.

As an application of our Theorem, we get the following result.

Corollary 2.2. Let R be a non-commutative prime ring and I a nonzero ideal of R. Suppose that T_{1} and T_{2} are two left centralizers on R such that $T_{1}(x) a \pm a T_{2}(x) \in$ $Z(R)$ for all $x \in I$, where $a \notin Z(R)$, then $T_{1}=0$ and $a T_{2}=0$.

In [3, Theorem 2.1], it is showed that if a prime ring R admits a nonzero left centralizer T, with $T(x) \neq x$ for all x in a nonzero ideal I of R, such that $T([x, y])=[x, y]$ for all $x, y \in I$, then R must be commutative. The author in [8] with addition of 2 -torsion freeness hypothesis, extended the preceding result to a Jordan ideal.

Motivated by the preceding results we investigate a more general context which allows us to generalize the above result in two ways. First of all, we will assume that $T([x, y])$ belong to center of R / P rather than $T([x, y])=0$. Secondly we will investigate the behavior of the more general expression $\overline{T_{1}(x y)-T_{2}(y x)} \in Z(R / P)$ involving two P-left centralizers instead of the expression $T(x y)-T(y x)=0$.
Theorem 2.3. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \varsubsetneqq I$. Suppose that T_{1} and T_{2} are two P-left centralizers on R, then the following assertions are equivalent:
(1) $\overline{T_{1}(x y)-T_{2}(y x)} \in Z(R / P)$ for all $x, y \in I$;
(2) $\left(T_{1}(R) \subseteq P\right.$ and $\left.T_{2}(R) \subseteq P\right)$ or R / P is a commutative integral domain.

Proof. By given assumption, we have

$$
\begin{equation*}
\overline{T_{1}(x y)-T_{2}(y x)} \in Z(R / P) \text { for all } x, y \in I . \tag{2.9}
\end{equation*}
$$

Substituting $y r$ for y in (2.9), and by expanding this equation, we get

$$
\begin{equation*}
\left[T_{2}(y)[x, r], r\right] \in P \text { for all } r, x, y \in I . \tag{2.10}
\end{equation*}
$$

Replacing y by $y T_{2}(y)$ in (2.10), we find that

$$
\begin{equation*}
T_{2}(y)\left[T_{2}(y)[x, r], r\right]+\left[T_{2}(y), r\right] T_{2}(y)[x, r] \in P \text { for all } r, x, y \in I . \tag{2.11}
\end{equation*}
$$

In light of (2.10), Eq. (2.11) yields

$$
\begin{equation*}
\left[T_{2}(y), r\right] T_{2}(y)[x, r] \in P \text { for all } r, x, y \in I \tag{2.12}
\end{equation*}
$$

Writing $t x$ for x in (2.12), one can easily to see that

$$
\left[T_{2}(y), r\right] T_{2}(y) t[x, r] \in P \text { for all } r, t, x, y \in I .
$$

According to Fact 1.1, we obtain either R / P is an integral domain or $\left[T_{2}(y), r\right] T_{2}(y) \in$ P for all $r, y \in I$. Arguing as above, the last relation assures that $\overline{T_{2}(y)} \in Z(R / P)$ for all $y \in I$ and our hypothesis becomes

$$
\begin{equation*}
T_{1}(x)[y, x]+\left[T_{1}(x), x\right] y \in P \text { for all } x, y \in I . \tag{2.13}
\end{equation*}
$$

Putting $y u$ instead of y in (2.13), we get

$$
T_{1}(x) y[u, x] \in P \text { for all } u, x, y \in I .
$$

By the primeness of P, we conclude that $T_{1}(R) \subseteq P$ or R / P is an integral domain. Now if $T_{1}(R) \subseteq P$, then equation (2.9) yields $\overline{T_{2}(y) x} \in Z(R / P)$ for all $x, y \in I$. Commuting this expression with r, we find that $T_{2}(y) I[x, r] \subseteq P$. Once again applying Fact 1.1, it follows that $T_{2}(R) \subseteq P$ or R / P is a commutative integral domain.

As an application of Theorem 2.3, the following corollary gives a generalization of some results in $[3,8]$.

Corollary 2.4. Let R be a prime ring and I a nonzero ideal of R. Suppose that T_{1} and T_{2} are nonzero two left centralizers on R, then the following assertions are equivalent:
(1) $T_{1}(x y) \pm T_{2}(y x) \in Z(R)$ for all $x, y \in I$;
(2) R is a commutative integral domain.

Corollary 2.5. Let R be a prime ring and I a nonzero ideal of R. Suppose that T is a nonzero left centralizer on R, then the following assertions are equivalent:
(1) $T([x, y]) \in Z(R)$ for all $x, y \in I$;
(2) $T(x \circ y) \in Z(R)$ for all $x, y \in I$;
(3) R is a commutative integral domain.

In [3, Theorems 3.1 and 3.3], it is proved that a prime ring R must be a commutative integral domain if it admits a non trivial left centralizer T such that $T(x y)-x y \in Z(R)$ or $T(x y)-y x \in Z(R)$ for all x, y in a nonzero ideal I of R. This result can be obtained as an immediate application of Corollary 2.5.

Corollary 2.6. Let R be a prime ring and I a nonzero ideal of R. Suppose that T is a non trivial left centralizer on R, then the following assertions are equivalent:
(1) $T(x y) \pm x y \in Z(R)$ for all $x, y \in I$;
(2) $T(x y) \pm y x \in Z(R)$ for all $x, y \in I$;
(3) R is a commutative integral domain.

The following theorem exhibits a connection between the commutativity of R / P and range inclusion results of a pair of P-left centralizers.

Theorem 2.7. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \nsubseteq I$. If T_{1} and T_{2} are two P-left centralizers on R, then the following assertions are equivalent:
(1) $\overline{T_{1}(x) T_{2}(x)} \in Z(R / P)$ for all $x \in I$;
(2) $T_{1}(R) \subseteq P$ or $T_{2}(R) \subseteq P$ or R / P is a commutative integral domain.

Proof. For non-trivial implications. Assume that

$$
\begin{equation*}
\overline{T_{1}(x) T_{2}(x)} \in Z(R / P) \text { for all } x \in I \tag{2.14}
\end{equation*}
$$

A Linearization of (2.14) gives

$$
\overline{T_{1}(x) T_{2}(y)+T_{1}(y) T_{2}(x)} \in Z(R / P) \text { for all } x, y \in I
$$

This means that

$$
\begin{array}{r}
{\left[T_{1}(x), r\right] T_{2}(y)+T_{1}(x)\left[T_{2}(y), r\right]+T_{1}(y)\left[T_{2}(x), r\right]+\left[T_{1}(y), r\right] T_{2}(x) \in P} \tag{2.15}\\
\text { for all } r, x, y \in I .
\end{array}
$$

Substituting $y T_{2}(x)$ for y in (2.15) and combining it from the above expression, we get

$$
\begin{equation*}
\left(T_{1}(x) T_{2}(y)+T_{1}(y) T_{2}(x)\right)\left[T_{2}(x), r\right] \in P \text { for all } r, x, y \in I \tag{2.16}
\end{equation*}
$$

Putting $t r$ instead of r in (2.16), we obtain

$$
\left(T_{1}(x) T_{2}(y)+T_{1}(y) T_{2}(x)\right) t\left[T_{2}(x), r\right] \in P \text { for all } r, t, x, y \in I
$$

In view of the primeness of P, we find that either $T_{1}(x) T_{2}(y)+T_{1}(y) T_{2}(x) \in P$ for all $x, y \in I$ or $\left[T_{2}(x), r\right] \in P$ for all $r, x \in I$.
In the latter case, taking $x=x s$, it is obviously to see that

$$
\begin{equation*}
T_{2}(x)[s, r] \in P \text { for all } r, s, x \in I \tag{2.17}
\end{equation*}
$$

Writing $x u$ for x and using Fact 1.1, we arrive at $T_{2}(R) \subseteq P$ or R / P is commutative. Now consider the first case, i.e., $T_{1}(x) T_{2}(y)+T_{1}(y) T_{2}(x) \in P$ for all $x, y \in I$. Replacing y by $y w$ in this equation, it follows that $T_{1}(y)\left(T_{2}(x) w-w T_{2}(x)\right) \in P$ for all $w, x, y \in I$. Thereby obtaining,

$$
T_{1}(y) z\left(T_{2}(x) w-w T_{2}(x)\right) \in P \text { for all } w, x, y, z \in I
$$

Therefore, either $T_{1}(R) \subseteq P$ or $T_{2}(x) w-w T_{2}(x) \in P$ for all $w, x \in I$. In the last case, putting $x=x y$, we easily get $T_{2}(x)[w, y] \in P$ for all $w, x, y \in I$ proving that $T_{2}(R) \subseteq P$ or R / P is an integral domain.

Corollary 2.8. Let R be a prime ring and I a nonzero ideal of R. If T_{1} and T_{2} are two nonzero left centralizers on R such that $T_{1}(x) T_{2}(x) \in Z(R)$ for all $x \in I$, then R is a commutative integral domain.

Theorem 2.9. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \nsubseteq I$. If T_{1} and T_{2} are two P-left centralizers on R, then the following assertions are equivalent:
(1) $\overline{\left[T_{1}(x), T_{2}(y)\right]} \in Z(R / P)$ for all $x, y \in I$;
(2) $\overline{T_{1}(x) \circ T_{2}(y)} \in Z(R / P)$ for all $x, y \in I$;
(3) $T_{1}(R) \subseteq P$ or $T_{2}(R) \subseteq P$ or R / P is a commutative integral domain.

Proof. Wee only need to prove (1) $\Longrightarrow(3)$ and $(2) \Longrightarrow(3)$.
$(1) \Longrightarrow(3)$ For all $x, y \in I$, we suppose that

$$
\begin{equation*}
\overline{\left[T_{1}(x), T_{2}(y)\right]} \in Z(R / P) . \tag{2.18}
\end{equation*}
$$

This may be rewritten as

$$
\begin{equation*}
\left[\left[T_{1}(x), T_{2}(y)\right], r\right] \in P \text { for all } r, x, y \in I \tag{2.19}
\end{equation*}
$$

Analogously, replacing $y t$ for y, where $t \in R$ in (2.19), and by appropriate expansion, get

$$
\begin{equation*}
\left[T_{1}(x), T_{2}(y)\right][t, r]+T_{2}(y)\left[\left[T_{1}(x), t\right], r\right]+\left[T_{2}(y), r\right]\left[T_{1}(x), t\right] \in P . \tag{2.20}
\end{equation*}
$$

Letting $t=T_{1}(x)$ in (2.20), one can see that

$$
\left[T_{1}(x), T_{2}(y)\right]\left[T_{1}(x), r\right] \in P \text { for all } r, x, y \in I .
$$

Keeping in mind that $\overline{\left[T_{1}(x), T_{2}(y)\right]} \in Z(R / P)$, we get

$$
\begin{equation*}
\left[T_{1}(x), T_{2}(y)\right] I\left[T_{1}(x), r\right] \subseteq P \text { for all } r, x, y \in I \tag{2.21}
\end{equation*}
$$

In light of the primeness of P, we find that either $\left[T_{1}(x), T_{2}(y)\right] \in P$ or $\left[T_{1}(x), r\right] \in P$ for all $x \in I$. Consequently, I is a union of two additive subgroups I_{1} and I_{2}, where

$$
I_{1}=\left\{x \in I /\left[T_{1}(x), T_{2}(y)\right] \in P \text { for all } y \in I\right\} \text { and } I_{2}=\left\{x \in I /\left[T_{1}(x), I\right] \subseteq P\right\} .
$$

According to Brauer's trick, we are forced to conclude that either $I=I_{1}$ or $I=I_{2}$. If $I=I_{1}$, i.e. $\left[T_{1}(x), T_{2}(y)\right] \in P$ for all $x, y \in I$, then replacing y by $y s$, one obtains

$$
\begin{equation*}
T_{2}(y)\left[T_{1}(x), s\right] \in P \text { for all } s, x, y \in I \tag{2.22}
\end{equation*}
$$

Substituting $y u$ for y in (2.22), we obviously get

$$
T_{2}(y) u\left[T_{1}(x), s\right] \in P \text { for all } s, u, x, y \in I .
$$

So again an appeal to Fact 1.1, gives either $T_{2}(R) \subseteq P$ or $\left[T_{1}(x), s\right] \in P$ for all $x, s \in I$.
Now if $I=I_{2}$, that is $\left[T_{1}(x), r\right] \in P$ for all $x, r \in I$, then putting $x w$ instead of x, we obtain

$$
\begin{equation*}
T_{1}(x)[z, r] \in P \text { for all } x, y, z \in I \tag{2.23}
\end{equation*}
$$

Writing $x w$ for x in (2.23), we get

$$
T_{1}(x) w[z, r] \in P \text { for all } r, w, x, z \in I .
$$

Accordingly, it follows that $T_{1}(R) \subseteq P$ or R / P is a commutative integral domain. $(2) \Longrightarrow(3)$ Can be proved by using the same steps as we did before.

Corollary 2.10. Let R be a prime ring and I a nonzero ideal of R. If T_{1} and T_{2} are two nonzero left centralizers on R, then the following assertions are equivalent:
(1) $\left[T_{1}(x), T_{2}(y)\right] \in Z(R)$ for all $x, y \in I$;
(2) $T_{1}(x) \circ T_{2}(y) \in Z(R)$ for all $x, y \in I$;
(3) R is a commutative integral domain.

Using similar arguments as above with necessary variation, we can prove the following theorem.

Theorem 2.11. Let R be a ring, I a nonzero ideal of R and P a prime ideal of R such that $P \nsubseteq I$. Suppose that T_{1} and T_{2} are two P-left centralizers on I of R, then the following assertions are equivalent:
(1) $\overline{T_{1}(x) T_{2}(y)-[x, y]} \in Z(R / P)$ for all $x, y \in I$;
(2) $\overline{T_{1}(x) T_{2}(y)-x \circ y} \in Z(R / P)$ for all $x, y \in I$;
(3) R / P is a commutative integral domain.

Let R be a prime ring. Letting $P=(0)$ in the previous theorem, we deduce that, if $T_{1}(x) T_{2}(y)-[x, y] \in Z(R)$ or $T_{1}(x) T_{2}(y)-x \circ y \in Z(R)$ for all $x, y \in I$, then R is commutative. The following corollary shows that the same conclusion remains satisfied for semi-prime rings.

Corollary 2.12. Let R be a semi-prime ring and I a nonzero ideal of R. Suppose that T_{1} and T_{2} are two left centralizers on R, then the following assertions are equivalent:
(1) $T_{1}(x) T_{2}(y) \pm[x, y] \in Z(R)$ for all $x, y \in I$;
(2) $T_{1}(x) T_{2}(y) \pm x \circ y \in Z(R)$ for all $x, y \in I$;
(3) R is commutative.

Proof. We have only to prove $(1) \Longrightarrow(3)$, while the implication $(2) \Longrightarrow(3)$ can be proved similarly. The ring R is semi-prime, then there exists a family \mathcal{P} of prime ideals such that $\bigcap_{P \in \mathcal{P}} P=(0)$. Then we may suppose existence of a two left centralizers T_{1} and T_{2} satisfying $T_{1}(x) T_{2}(y) \pm[x, y] \in Z(R)$ for all $x, y \in I$. Thereby obtaining, $\left[T_{1}(x) T_{2}(y) \pm[x, y], r\right]=0 \in \bigcap_{P \in \mathcal{P}} P$ for all $r, x, y \in I$, therefore, Theorem 2.11 yields that for all $P \in \mathcal{P}, R / P$ is commutative which, because of $\bigcap_{P \in \mathfrak{P}} P=(0)$, assures that R is commutative.

References

[1] A. Abbasi, M. S. Khan and M. R. Mozumder, On commutativity and centralizers of prime ring with involution, Thai J. Math., 20(3)(2022), 1329-1335.
[2] A. Z. Ansari and F. Shujat, Additive mappings on semiprime rings functioning as centralizers, Aust. J. Math. Anal. Appl., 19(2)(2022), Art. 11, 9 pp.
[3] M. Ashraf and S. Ali, On left multipliers and the commutativity of prime rings, Demonstratio Math., 41(4)(2008), 763-771.
[4] N. Aydin, A note on generalized derivations of prime rings, Int. J. Algebra, 5(2011), 17-23.
[5] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with generalized identities, Monogr. Textbooks Pure Appl. Math. 196, Marcel Dekker, Inc., New York, 1996, xiv+522 pp.
[6] M. Fošner and B. Marcen, A new equation related to two-sided centralizers in prime rings, Aequationes Math., 96(6)(2022), 1207-1219.
[7] M. Fošner, B. Marcen and J. Vukman, On functional equation related to (m, n)-Jordan centralizers in prime rings, Bull. Malays. Math. Sci. Soc., 42(6)(2019), 3131-3147.
[8] L. Oukhtite, Left multipliers and Jordan ideals in rings with involution, Afr. Diaspora J. Math., 11(1)(2011), 24-28.

