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SOME RESULTS ON CENTRALIZERS OF SEMIPRIME RINGS

ABU ZAID ANSARI

Abstract. The objective of this research paper is to prove that an additive
mapping T from a semiprime ring R to itself will be centralizer having
a suitable torsion restriction on R if it satisfy any one of the following
algebraic equations
(a) 2T (xnynxn) = T (xn)ynxn + xnynT (xn)
(b) 3T (xnynxn) = T (xn)ynxn+xnT (yn)xn+xnynT (xn) for every x, y ∈

R.
Further, few extensions of these results are also presented in the framework
of ∗-ring.

AMS Mathematics Subject Classification : 16N60, 16B99, 16W25.
Key words and phrases : Semiprime rings, left (right) centralizer and left
(right) Jordan centralizer.

1. Introduction

Throughout the present paper R will denote an associative ring with identity
element. A ring R is said to be t-torsion free, if tx = 0 implies x = 0 for all x in
R, n is strictly greater than 1. A ring R is prime if xRy = {0} implies x = 0 or
y = 0, and particularly a ring R is said to be semiprime if it satisfies the condition
that xRx = {0} implies x = 0. Helgosen [3] initiated to work on centralizers in
Banach algebras. The concept of centralizers is also known multipliers (see [11]).
Further, Wang [10] studied the concept of centralizers on commutative Banach
algebras. Johnson also studied the centralizers on topological algebras and he
has presented continuity of centralizers on Banach algebras (for the reference, see
[6, 7]). Then, Johnson introduced the concept of centralizers in certain classes
of rings. Following [5], any mapping T : R → R is known as left centralizer if
it satisfies two conditions: (i) T (x + y) = T (x) + T (y) and (ii) T (xy) = T (x)y
and T is said to be right centralizer if T satisfies (i) and T (xy) = xT (y) for
every pairs x, y ∈ R. If T is left as well as right centraizer, then T is known
as centralizer. Particularly, additive mapping T is a Jordan left centralizer

Received November 18, 2021. Revised April 13, 2022. Accepted April 20, 2022..
© 2022 KSCAM.

99



100 A.Z. Ansari

and Jordan right centralizer if T satisfies T (x2) = T (x)x and T (x2) = xT (x)
respectively for each x ∈ R, and if T is both, then it is Jordan centralizer.
Following the Theorem 2.3.2 in [2], if T from a semiprime ring R to itself is
a centralizer, then there exists an element λ ∈ C such that T (x) = λx for all
x ∈ R, where C is extended centroid on R. Zalar [12] has given a remarkable
result which says that any Jordan centralizer on a 2-torsion free semiprime ring
is a centralizer. Later, Vukman [8] has presented a striking result which declares
that any additive mapping T from R to itself is a centralizer if T satisfies the
algebraic equation 2T (x2) = xT (x) + T (x)x on R, where R is 2-torsion free
semiprime ring. Further, Vukman and Kosi Ulbl [9] established a result by
taking algebraic equation 3T (xyx) = T (x)yx + xT (y)x + xyT (x). In fact they
proved that any additive mapping T from 2-torsion free semiprime R to itself
will be of the type T (x) = λx, where λ ∈ C if it satisfies the algebraic equation
3T (xyx) = T (x)yx+ xT (y)x+ xyT (x) for each pair x, y ∈ R. Inspired by these
results, we have extended the above cited results. More precisely, it is proved
that: if R is a semiprime ring with n!-torsion restriction and T from R to itself
is an additive mapping which satisfies 2T (xnynxn) = T (xn)ynxn + xnynT (xn)
or 3T (xnynxn) = T (xn)ynxn + xnT (yn)xn + xnynT (xn) for each x, y ∈ R, then
T will be centralizer on R, where n ≥ 1 be any fixed integer. To achieve the final
conclusion of the main theorems, we need the following result due to Vukman:

Lemma 1.1 ([8, Theorem 1]). Let R be a 2 torsion free semiprime ring and T :
R→ R be an additive mapping satisfying the condition 2T (x2) = T (x)x+xT (x)
for all x ∈ R, then T is a centralizer on R.

2. Main results

Theorem 2.1. Suppose that R is a n!-torsion free semiprime ring and n ≥ 1 be a
fixed integer. If T : R→ R is an additive mapping which satisfies 2T (xnynxn) =
T (xn)ynxn + xnynT (xn) for all x, y ∈ R, then T will be a centralizer on R.

Proof. For all x, y ∈ R, we have given that
2T (xnynxn) = T (xn)ynxn + xnynT (xn). (1)

Replace x by e in (1) to obtain the following
2T (yn) = T (e)yn + ynT (e) ∀y ∈ R. (2)

Replacing y by e in (1), to find
2T (x2n) = T (xn)xn + xnT (xn) ∀x ∈ R. (3)

Next, put y + e in place of y in (2), we find
n∑

i=0

nCi[2T (y
n−i)− T (e)yn−i − yn−iT (e)] = 0 ∀y ∈ R. (4)

Substituting ky for y, we get
n∑

i=0

nCik
n−i[2T (yn−i)− yn−iT (e)− T (e)yn−i] = 0 ∀y ∈ R. (5)
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Putting k = 1, 2, 3..., n−1 one by one and recognize the subsequent homogeneous
system of n− 1 linear equations to obtain a Vander Monde matrix

V =


11 12 ... 1n−1

21 22 ... 2n−1

. . ... .

. . ... .

. . ... .
(n− 1)1 (n− 1)2 ... (n− 1)n−1

 .

Since |V| is equal to the product of positive integers and every element of that
is smaller than n− 1, which yields that nCi[2T (y

n−i)− T (e)yn−i − yn−iT (e)] =
0 for every y ∈ R. Particularly, putting i = n− 1 and use torsion restriction on
R to find

2T (y) = yT (e) + T (e)y ∀y ∈ R. (6)
Now, replacing x by x+ ke in equation (3), we get

2
2n∑
i=0

2nCiT (x
2n−i(ke)i)

= [
n∑

i=0

nCiT (x
n−i(ke)i)][

n∑
i=0

nCi(x
n−i(ke)i)]

+[
n∑

i=0

nCi(x
n−i(ke)i)][

n∑
i=0

nCiT (x
n−i(ke)i)] ∀x ∈ R.

(7)

Rearranging the terms of ki for all i = 1, 2, 3, . . . , 2n− 1, we obtain
k[22nC1T (x

2n−1)− nC1T (x
n)xn−1 − nC1T (x

n−1)xn − nC1x
n−1T (xn)

−nC1x
nT (xn−1)] + k2[22nC2T (x

2n−2)− nC2T (x
n)xn−2 − nC2T (x

n−1)xn−1

−nC2x
n−2T (xn)− nC2x

n−1T (xn−1)] + . . . k2n−2[22nC2n−2T (x
2)− nCn−2T (x)x

−nCn−2T (e)x
2 − nCn−2xT (x)− nCn−2x

2T (e)] + k2n−1[22nC2n−1T (x)
−nCn−1T (x)− nCn−1T (e)x− nCn−1T (x)− nCn−1xT (e)] = 0

(8)
Again, replacing k = 1, 2, 3..., 2n−2 one by one and using the same interpretation
as done earlier, we get a homogeneous system of 2n − 2 linear equations with
trivial solution. Hence all co-efficients of ki are equal to zero. In particular,

22nC2n−2T (x
2) = nCn−2T (x)x+ nCn−2T (e)x

2

+nCn−2xT (x) +
nCn−2x

2T (e) ∀x ∈ R.
(9)

Replace y by x2 to get
2T (x2) = T (e)x2 + x2T (e) ∀x ∈ R. (10)

Using (10) together with torsion restriction on R in (9), we obtain 2T (x2) =
T (x)x+ xT (x) ∀x ∈ R. Hence, from Lemma 1.1, we obtain the required result.

Theorem 2.2. Let R be a n!-torsion free semiprime ring and n ≥ 1 be any fixed
integer. If T : R → R is an additive mapping which satisfies 3T (xnynxn) =



102 A.Z. Ansari

T (xn)ynxn + xnT (yn)xn + xnynT (xn) for every x, y ∈ R, then T will be a
centralizer on R.

Proof. Since
3T (xnynxn) = T (xn)ynxn + xnT (yn)xn + xnynT (xn) ∀x, y ∈ R, (11)

then, putting e for x in (11), we find
3T (yn) = T (e)yn + T (yn) + ynT (e) ∀y ∈ R. (12)

Substitute e by y in (11) to obtain
3T (x2n) = T (xn)xn + xnT (e)xn + xnT (xn) ∀x ∈ R. (13)

Next, replacing y by y + e in equation (12), we have
n∑

i=0

nCi[3T (y
n−i)− yn−iT (e)− T (e)yn−i − T (yn−i)] = 0 ∀y ∈ R. (14)

Replacing y by ky, we obtain
n∑

i=0

nCik
n−i[3T (yn−i)− yn−iT (e)− T (e)yn−i − T (yn−i)] = 0 ∀y ∈ R. (15)

Putting k = 1, 2, 3..., n − 1 one by one and using the same arguments as did
earlier, we have a homogeneous system of n − 1 linear equations with trivial
solution. Hence all co-efficients of ki are equal to zero. Which yields that
nCik

n−i[3T (yn−i)− yn−iT (e)− T (e)yn−i − T (yn−i)] = 0 for every y ∈ R. Par-
ticularly, replace i = n − 1, we obtain n[3T (y) − T (e)y − T (y) − yT (e)] =
0 for all y ∈ R. Using torsion restriction on R, we obtain

2T (y) = yT (e) + T (e)y, ∀y ∈ R. (16)
Now, replacing x by x+ ke in equation (13), we get

3
2n∑
i=0

2nCiT (x
2n−i(ke)i)

= [
n∑

i=0

nCiT (x
n−i(ke)i)][

n∑
i=0

nCi(x
n−i(ke)i)]

+[
n∑

i=0

nCi(x
n−i(ke)i)]T (e)[

n∑
i=0

nCi(x
n−i(ke)i)]

+[
n∑

i=0

nCi(x
n−i(ke)i)][

n∑
i=0

nCiT (x
n−i(ke)i)], ∀x ∈ R

(17)

Reshuffling the terms of ki for all i = 1, 2, 3, . . . , 2n− 1, we obtain
k[32nC1T (x

2n−1)− nC1T (x
n)xn−1 − nC1T (x

n−1)xn − nC1x
nT (e)xn−1

−nC1xT (e)x
n − nC1x

n−1T (xn)− nC1x
nT (xn−1)] + . . .+ k2n−2[32nC2n−2T (x

2)
−nCn−2T (x)x− nCn−2T (e)x

2 − nCn−1
nCn−1xT (e)x− nCn−2xT (x)

−nCn−2x
2T (e)] + k2n−1[32nC2n−1T (x)− nCn−1T (x)− nCn−1T (e)x

−nCn−1xT (e)− nCn−1T (x)− nCn−1T (e)x− nCn−1xT (e)] = 0
(18)
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Replacing k = 1, 2, 3..., 2n − 2 in tern and using the same algebraic arguments
as done earlier we get that all co-efficient of ki is equal to zero. Particularly,

32nC2n−2T (x
2)− nCn−2T (x)x− nCn−2T (e)x

2

−nCn−1
nCn−1xT (e)x− nCn−2xT (x)− nCn−2x

2T (e) = 0, ∀x ∈ R
(19)

Replacing y by x and y by x2 in (16), we find the following two equations
2T (x2) = T (e)x2 + x2T (e), ∀x ∈ R. (20)

2T (x) = T (e)x+ xT (e), ∀x ∈ R. (21)
Multiplying from left side by x and from right side by x one by one to (21), we
have

2xT (x) = xT (e)x+ x2T (e), ∀x ∈ R. (22)
2T (x)x = T (e)xx + xT (e)x, ∀x ∈ R. (23)

Adding the above two equations and using (20), we find
xT (e)x = xT (x) + T (x)x− T (x2), ∀x ∈ R. (24)

Using (20) and (24) in (19) and torsion restriction on R, we get 2T (x2) =
T (x)x + xT (x) for all x ∈ R. Therefore by Lemma 1.1, we reached the desired
conclusion.

Example 2.1 shows that the above theorems are not insignificant.

Example 2.1. Let R =
{( r s

0 t

)
| r, s, t ∈ 2Z8

}
is a ring under matrix

addition and matrix multiplication, where Z8 denotes the ring of integers addition
and multiplication modulo 8. Define mapping T : R → R by T

[(
r s
0 t

)]
=(

0 s
0 0

)
. One can easily see that R is not a 2-torsion free semiprime ring and

T satisfy the algebraic identities (1) and (11) but T is not a centralizer on R,
hence semiprimeness hypothesis is crucial for Theorem 2.1 and Theorem 2.2.

3. Results on involution

Before going the main results of this section, we fix some basic definitions
and notions. An additive mapping ∗ from R to itself is known as involution if
it fascinate 2 conditions: (ab)∗ = b∗a∗ and (a∗)∗ = a for every a, b ∈ R. A
ring together with an involution ∗ is said to be a ∗-ring (also known as ring
with involution). An additive mapping T from R to itself is said to be a left
∗-centralizer if for all x, y ∈ R, T satisfies T (xy) = T (x)y∗ and T is said to be
right ∗-centralizer if T (xy) = x∗T (y). An additive mapping T from R to itself is
known as ∗-centralizer if it is left ∗-centralizer along with right ∗-centralizer on
R. Particularly, T is left Jordan ∗-centralizer and right Jordan ∗-centralizer if
T satisfies T (x2) = T (x)x∗ and T (x2) = x∗T (x) respectively. If T is both, then
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it is known as Jordan ∗-centralizer. If T is ∗-centralizers on R, then obviously
for all x, y ∈ R, T satisfies 2T (xnynxn) = T (xn)(y∗)n(x∗)n + (x∗)n(y∗)nT (xn)
and 3T (xnynxn) = T (xn)(y∗)n(x∗)n + (x∗)nT (yn)(x∗)n + (x∗)n(y∗)nT (xn) but
the converse of this statement does not hold generally. So, it legitimate to ask
whether an additive mapping T fromR to itself satisfying the above two algebraic
conditions, will be a ∗-centralizer on R. The response of this mathematical
sentence is in positive sense. So, this paper accord with the investigation of
this result. Indeed, it is proved that an additive mapping T from a semiprime
∗-ring R to itself satisfying 2T (xnynxn) = T (xn)(y∗)n(x∗)n + (x∗)n(y∗)nT (xn)
or 3T (xnynxn) = T (xn)(y∗)n(x∗)n + (x∗)nT (yn)(x∗)n +(x∗)n(y∗)nT (xn) with
suitable torsion restriction, will be a ∗-centralizer of R. To complete the proof
of this result, we use the following result due to Ashraf and Mozumder.

Lemma 3.1 ([1, Corollary 2.1]). Any additive mapping T from a 2-torsion
free semiprime ∗-ring R to itself is a ∗-centralizer, if it satisfies the condition
2T (x2) = T (x)x∗ + x∗T (x) for each x ∈ R.

Let us start main result of this part from the following theorem:

Theorem 3.2. Any additive mapping T from a n!-torsion free semiprime ∗-ring
R to itself is a ∗-centralizer, if it satisfies the algebraic condition 2T (xnynxn) =
T (xn)(y∗)n(x∗)n + (x∗)n(y∗)nT (xn), ∀x, y ∈ R, where n ≥ 1 be a fixed integer.

Proof. Suppose that S : R → R is a mapping which is defined as S(x) =
T (x∗), ∀x ∈ R. It is clear that S is an additive mapping on R. Now, consider

2S(xnynxn) = 2T ((xnynxn)∗)
= 2T

[
(x∗)n(y∗)n(x∗)n

]
= T (x∗)nynxn + xnynT (x∗)n

= S(xn)ynxn + xnynS(x)n for all x, y ∈ R.

Using Theorem 2.1, we obtain that S will be a centralizer on R. Hence, S(xy) =
xS(y) = S(x)y, ∀x, y ∈ R. Which yields that T (x∗)2 = xT (x∗) = T (x∗)x, ∀x ∈
R. Now, replacing x by x∗ and using Lemma 3.1, we get required result.

Theorem 3.3. Any additive mapping T from a n!-torsion free semiprime ∗-ring
R to itself is a ∗-centralizer, if it satisfies the algebraic condition 3T (xnynxn) =
T (xn)(y∗)n(x∗)n+(x∗)nT (yn)(x∗)n+(x∗)n(y∗)nT (xn), ∀x, y ∈ R, where n ≥ 1
be a fixed integer.

Proof. Consider a mapping S from R to itself defined as S(x) = T (x∗), ∀x ∈ R.
One can easily see that S is an additive mapping. Now, consider

3S(xnynxn) = 3T ((xnynxn)∗)
= 3T

[
(x∗)n(y∗)n(x∗)n

]
= T (x∗)nynxn + xnT (y∗)nxn + xnynT (x∗)n

= S(xn)ynxn + xnT (yn)xn + xnynS(x)n, ∀x, y ∈ R.
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Using Theorem 2.2, we find that S will be a centralizer. Hence, S(xy) = xS(y) =
S(x)y, ∀x, y ∈ R, which gives that T (x∗)2 = xT (x∗) = T (x∗)x, ∀x ∈ R.
Substituting x∗ for x and applying Lemma 3.1, we arrive at our conclusion.

Example 3.1. Let R =
{( r s

0 t

)
| r, s, t ∈ 2Z8

}
is a ring with involution

from R to itself by
(
r s
0 t

)∗

=

(
t −s
0 r

)
for all r, s, t ∈ 2Z8 under matrix

addition and matrix multiplication, where Z8 has its usual notation. Consider a
mapping T : R → R defined by T

[(
r s
0 t

)]
=

(
0 s
0 0

)
for all r, s, t ∈ 2Z8.

It is clear that T satisfy the identities of Theorem 3.2 and Theorem 3.3 and R
is neither a 2-torsion free semiprime ring nor T is a centralizer on R, hence
semiprimeness hypothesis is crucial for the above theorems.
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