• Title/Summary/Keyword: iterative solvers

Search Result 22, Processing Time 0.021 seconds

Efficient Iterative Solvers for Modified Mild Slope Equation (수정완경사방정식을 위한 반복기법의 효율성 비교)

  • Yoon, Jong-Tae;Park, Seung-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.61-66
    • /
    • 2006
  • Two iterative solvers are applied to solve the modified mild slope equation. The elliptic formulation of the governing equation is selected for numerical treatment because it is partly suited for complex wave fields, like those encountered inside harbors. The requirement that the computational model should be capable of dealing with a large problem domain is addressed by implementing and testing two iterative solvers, which are based on the Stabilized Bi-Conjugate Gradient Method (BiCGSTAB) and Generalized Conjugate Gradient Method (GCGM). The characteristics of the solvers are compared, using the results for Berkhoff's shoal test, used widely as a benchmark in coastal modeling. It is shown that the GCGM algorithm has a better convergence rate than BiCGSTAB, and preconditioning of these algorithms gives more than half a reduction of computational cost.

An efficient adaptive finite element method based on EBE-PCG iterative solver for LEFM analysis

  • Hearunyakij, Manat;Phongthanapanich, Sutthisak
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.353-361
    • /
    • 2022
  • Linear Elastic Fracture Mechanics (LEFM) has been developed by applying stress analysis to determine the stress intensity factor (SIF, K). The finite element method (FEM) is widely used as a standard tool for evaluating the SIF for various crack configurations. The prediction accuracy can be achieved by applying an adaptive Delaunay triangulation combined with a FEM. The solution can be solved using either direct or iterative solvers. This work adopts the element-by-element preconditioned conjugate gradient (EBE-PCG) iterative solver into an adaptive FEM to solve the solution to heal problem size constraints that exist when direct solution techniques are applied. It can avoid the formation of a global stiffness matrix of a finite element model. Several numerical experiments reveal that the present method is simple, fast, and efficient compared to conventional sparse direct solvers. The optimum convergence criterion for two-dimensional LEFM analysis is studied. In this paper, four sample problems of a two-edge cracked plate, a center cracked plate, a single-edge cracked plate, and a compact tension specimen is used to evaluate the accuracy of the prediction of the SIF values. Finally, the efficiency of the present iterative solver is summarized by comparing the computational time for all cases.

A SPARSE APPROXIMATE INVERSE PRECONDITIONER FOR NONSYMMETRIC POSITIVE DEFINITE MATRICES

  • Salkuyeh, Davod Khojasteh
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1131-1141
    • /
    • 2010
  • We develop an algorithm for computing a sparse approximate inverse for a nonsymmetric positive definite matrix based upon the FFAPINV algorithm. The sparse approximate inverse is computed in the factored form and used to work with some Krylov subspace methods. The preconditioner is breakdown free and, when used in conjunction with Krylov-subspace-based iterative solvers such as the GMRES algorithm, results in reliable solvers. Some numerical experiments are given to show the efficiency of the preconditioner.

Comparison of Numerical Analysis Methods of APro for the Total System Performance Assessment of a Geological Disposal System

  • Hyun Ho Cho;Hong Jang;Dong Hyuk Lee;Jung-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.165-173
    • /
    • 2023
  • Various linear system solvers with multi-physics analysis schemes are compared focusing on the near-field region considering thermal-hydraulic-chemical (THC) coupled multi-physics phenomena. APro, developed at KAERI for total system performance assessment (TSPA), performs a finite element analysis with COMSOL, for which the various combinations of linear system solvers and multi-physics analysis schemes should to be compared. The KBS-3 type disposal system proposed by Sweden is set as the target system and the near-field region, which accounts for most of the computational burden is considered. For comparison of numerical analysis methods, the computing time and memory requirement are the main concerns and thus the simulation time is set up to one year. With a single deposition hole problem, PARDISO and GMRES-SSOR are selected as representative direct and iterative solvers respectively. The performance of representative linear system solvers is then examined through a problem with an increasing number of deposition holes and the GMRES-SSOR solver with a segregated scheme shows the best performance with respect to the computing time and memory requirement. The results of the comparative analysis are expected to provide a good guideline to choose better numerical analysis methods for TSPA.

Elastodynamic analysis by a frequency-domain FEM-BEM iterative coupling procedure

  • Soares, Delfim Jr.;Goncalves, Kleber A.;de Faria Telles, Jose Claudio
    • Coupled systems mechanics
    • /
    • v.4 no.3
    • /
    • pp.263-277
    • /
    • 2015
  • This paper presents a coupled FEM-BEM strategy for the numerical analysis of elastodynamic problems where infinite-domain models and complex heterogeneous media are involved, rendering a configuration in which neither the Finite Element Method (FEM) nor the Boundary Element Method (BEM) is most appropriate for the numerical analysis. In this case, the coupling of these methodologies is recommended, allowing exploring their respective advantages. Here, frequency domain analyses are focused and an iterative FEM-BEM coupling technique is considered. In this iterative coupling, each sub-domain of the model is solved separately, and the variables at the common interfaces are iteratively updated, until convergence is achieved. A relaxation parameter is introduced into the coupling algorithm and an expression for its optimal value is deduced. The iterative FEM-BEM coupling technique allows independent discretizations to be efficiently employed for both finite and boundary element methods, without any requirement of matching nodes at the common interfaces. In addition, it leads to smaller and better-conditioned systems of equations (different solvers, suitable for each sub-domain, may be employed), which do not need to be treated (inverted, triangularized etc.) at each iterative step, providing an accurate and efficient methodology.

A fast adaptive numerical solver for nonseparable elliptic partial differential equations

  • Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.27-39
    • /
    • 1998
  • We describe a fast numerical method for non-separable elliptic equations in self-adjoin form on irregular adaptive domains. One of the most successful results in numerical PDE is developing rapid elliptic solvers for separable EPDEs, for example, Fourier transformation methods for Poisson problem on a square, however, it is known that there is no rapid elliptic solvers capable of solving a general nonseparable problems. It is the purpose of this paper to present an iterative solver for linear EPDEs in self-adjoint form. The scheme discussed in this paper solves a given non-separable equation using a sequence of solutions of Poisson equations, therefore, the most important key for such a method is having a good Poison solver. High performance is achieved by using a fast high-order adaptive Poisson solver which requires only about 500 floating point operations per gridpoint in order to obtain machine precision for both the computed solution and its partial derivatives. A few numerical examples have been presented.

  • PDF

Partitioned analysis of nonlinear soil-structure interaction using iterative coupling

  • Jahromi, H. Zolghadr;Izzuddin, B.A.;Zdravkovic, L.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.33-51
    • /
    • 2008
  • This paper investigates the modelling of coupled soil-structure interaction problems by domain decomposition techniques. It is assumed that the soil-structure system is physically partitioned into soil and structure subdomains, which are independently modelled. Coupling of the separately modelled partitioned subdomains is undertaken with various algorithms based on the sequential iterative Dirichlet-Neumann sub-structuring method, which ensures compatibility and equilibrium at the interface boundaries of the subdomains. A number of mathematical and computational characteristics of the coupling algorithms, including the convergence conditions and choice of algorithmic parameters leading to enhanced convergence of the iterative method, are discussed. Based on the presented coupling algorithms a simulation environment, utilizing discipline-oriented solvers for nonlinear structural and geotechnical analysis, is developed which is used here to demonstrate the performance characteristics and benefits of various algorithms. Finally, the developed tool is used in a case study involving nonlinear soil-structure interaction analysis between a plane frame and soil subjected to ground excavation. This study highlights the relative performance of the various considered coupling algorithms in modelling real soil-structure interaction problems, in which nonlinearity arises in both the structure and the soil, and leads to important conclusions regarding their adequacy for such problems as well as the prospects for further enhancements.

Computational aero-acoustics using a hybrid approach combining standard CFD tools with ACTRAN/LA; theory, process and applications

  • Migeot, Jean-Louis
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.545-560
    • /
    • 2008
  • O Source import ㅁDirect import form Nastran, ANSYS ㅁDirect import of all the RPM from the files containing the structural results O Solver ㅁDirect computation of all RPM (multiple load case): one matrix resolution with multiple RHS ㅁEfficient solvers (MUMPS, SPARSE, Iterative) ㅁFrequency parallelisms available for very large problems O In practice ㅁSmall problems run on a desktop ㅁLarge problems can exceed 3kHz on a car engine O Easy to mesh ㅁ3D model created in a few minutes thanks to the unequal meshes. O And all Actran standard features

  • PDF

A MIXED FINITE ELEMENT METHOD FOR NAVIER-STOKES EQUATIONS

  • Elakkad, Abdeslam;Elkhalfi, Ahmed;Guessous, Najib
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1331-1345
    • /
    • 2010
  • This paper describes a numerical solution of Navier-Stokes equations. It includes algorithms for discretization by finite element methods and a posteriori error estimation of the computed solutions. In order to evaluate the performance of the method, the numerical results are compared with some previously published works or with others coming from commercial code like ADINA system.

Multiscale Adaptive Wavelet-Galerkin Method for Membrane Eigenvalue Analysis (박막 고유치 해석을 위한 멀티스케일 적응 웨이블렛-갤러킨 기법)

  • Yi, Yong-Sub;Kim, Yoon-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1291-1296
    • /
    • 2003
  • The objective of the present research is to develop a wavelet-based multiscale adaptive Galerkin method for membrane eigenvalue analysis. Since approximate eigensolutions at a certain resolution level can be good guesses, which play an important role in typical iterative solvers, at the next resolution level, the multiresolution iterative solution approach by wavelets can improve the solutionconvergence rate substantially. The intrinsic difference checking nature of wavelets can be also utilized effectively to develop an adaptive strategy. The present wavelet-based approach will be implemented for the simplest vector iteration method, but some important aspects, such as convergence speedup, and the reduction in the number of nodes can be clearly demonstrated.

  • PDF