
J. Appl. Math. & Informatics Vol. 28(2010), No. 5-6, pp. 1131 - 1141
Website: http://www.kcam.biz

A SPARSE APPROXIMATE INVERSE PRECONDITIONER

FOR NONSYMMETRIC POSITIVE DEFINITE MATRICES

DAVOD KHOJASTEH SALKUYEH

Abstract. We develop an algorithm for computing a sparse approximate
inverse for a nonsymmetric positive definite matrix based upon the FFAP-
INV algorithm. The sparse approximate inverse is computed in the factored
form and used to work with some Krylov subspace methods. The precon-
ditioner is breakdown free and, when used in conjunction with Krylov-
subspace-based iterative solvers such as the GMRES algorithm, results in
reliable solvers. Some numerical experiments are given to show the effi-
ciency of the preconditioner.

AMS Mathematics Subject Classification : 65F10, 65F50.
Key words and phrases : linear system, nonsymmetric, positive definite,
sparse approximate inverse, preconditioning, FFAPINV, GMRES.

1. Introduction

Consider the linear system of equations

Ax = b, (1)

where the coefficient matrix A ∈ Rn×n is nonsingular, large, sparse and x, b ∈
Rn. An approximate solution of (1) is usually obtained by using a preconditioned
iterative Krylov-type method, such as the GMRES [17] and the BiCGSTAB [18]
methods. More precisely, to obtain good convergence rates, or even to converge,
these methods are applied to the left preconditioned linear system

MAx = Mb,

or right preconditioned linear system

AMy = b, x = My,

Received July 31, 2009. Revised August 18, 2009. Accepted September 22, 2009.
∗Corresponding author.

c© 2010 Korean SIGCAM and KSCAM.

1131

1132 Davod Khojasteh Salkuyeh

where the matrix M is the preconditioner. Two-side preconditioning is also
possible [1, 3, 16]. There are two types of preconditioners:

(1) Finding a matrix M such that M = G−1 where G approximates A;
(2) Finding a matrix M that directly approximates A−1 (M ≈ A−1).

In this paper, we consider a preconditioner of the second type.
If the matrix A admits the LDU factorization A = LDU , where L and UT are

lower unitriangular matrices and D = diag(d1, d2, . . . , dn) is a diagonal matrix,
then

L−1AU−1 = D.

Letting W = L−1 and Z = U−1, we have WAZ = D. Obviously W and ZT are
lower unitriangular matrices. The matrices W and Z are called inverse factors
of A. If W̃ and Z̃T be two sparse lower unitriangular matrices that approximate
W and ZT , respectively, and D̃ is a nonsingular diagonal matrix approximating
D then M = Z̃D̃−1W̃ (≈ A−1) may be used as a preconditioner for (1). Here,
we say that M is a sparse approximate inverse for A in the factored form.

There are several ways to compute sparse approximate inverse factors of a
matrix. In [8, 9], Kolotilina and Yeremin have proposed the FSAI algorithm.
The AIB algorithm, which is based on a bordering technique, was presented by
Saad in [16]. The FSAI and AIB preconditioners are always correctly defined (at
least in exact arithmetic) for any positive definite (not necessarily symmetric)
matrix A and arbitrary sparsity patterns [7]. Benzi et al. proposed the AINV
method in [4, 5] which is well defined (in exact arithmetic) if the matrix A is
an H-matrix [5]. For symmetric positive definite (SPD) matrices, there exists
a variant of the AINV method, denoted by SAINV (for Stabilized AINV), that
is breakdown-free [2]. This algorithm is also presented with the name AINV-A,
independently, by Kharchenko et al. in [7]. Recently, Rafiei and Toutounian in
[15] have proposed another variant of the AINV algorithm say SAINV-NS which
is free from breakdown for nonsymmetric positive definite (NSPD) matrices. Nu-
merical experiments presented in [15] show that the SAINV-NS preconditioner
is sparser and cheaper than the AINV-A preconditioner. Moreover, the SAINV-
NS preconditioner can be computed without using the matrix AT , whereas this
is not correct for the AINV-A preconditioner.

Another method is the procedure presented by Zhang in [20]. He proposed
a sparse approximate inverse technique for parallel preconditioning of general
sparse matrices. The proposed algorithm is essentially due to Luo [11, 12, 13].
Since in this procedure the factorization is performed in backward direction, we
call it BFAPINV (backward factored approximate inverse) algorithm. In [19],
Zhang proposed an alternative procedure to compute the factorization in the
forward direction, which we call it FFAPINV algorithm. In [10], Lee and Zhang
have shown that the BFAPINV algorithm is well-defined for M-matrices. It can
be easily seen that this is correct for the FFAPINV algorithm as well. In this
paper, we develop an algorithm for computing a sparse approximate inverse for
NSPD matrices based upon the FFAPINV algorithm.

A Sparse Approximate Inverse Preconditioner for NSPD Matrices 1133

This paper is organized as follows. In section 2, we review the FFAPINV
algorithm. Section 3 is devoted to the main results and the new variant of the
FFAPINV algorithm for NSPD matrices. Numerical experiments are given in
section 4. Finally, we give some concluding remarks in section 5.

2. A review of the FFAPINV algorithm

Let W and Z be the inverse factors of A = (aij), i.e.,

WAZ = D, (2)

where

W = (wT
1 , w

T
2 , . . . , w

T
n)

T , Z = (z1, z2, . . . , zn), D = diag(d1, d2, . . . , dn),

in which wi’s and zi’s are the rows and columns of W and Z, respectively. Using
(2) we obtain

wiAzj =

{
di, i = j
0, i 6= j.

(3)

From the structure of the matrices W and Z, we have (for more details see [19])

z1 = e1, zj = ej +

j−1∑

i=1

αizi, j = 2, . . . , n, (4)

w1 = eT1 , wj = eTj +

j−1∑

i=1

βiwi, j = 2, . . . , n, (5)

where ej is the jth column of the identity matrix.
First of all, we see that

d1 = w1Az1 = eT1 Ae1 = a11.

Now let 2 ≤ j ≤ n be fixed. Then from (3) and (4) and for k = 1, . . . , j − 1, we
have

0 = wkAzj

= wkAej +

j−1∑

i=1

αiwkAzi

= wkA∗j + αkwkAzk

= wkA∗j + αkdk,

where A∗j is the jth column of A. Therefore

αi = −wiA∗j
di

, i = 1, . . . , j − 1.

1134 Davod Khojasteh Salkuyeh

In the same manner

βi = −Aj∗zi
di

, i = 1, . . . , j − 1,

where Aj∗ is the jth row of A. Putting these results together gives the following
algorithm for computing the inverse factors of A.

Algorithm 1:

1. z1 := e1, w1 := eT1 and d1 := a11
2. For j = 2, . . . , n, Do
3. zj := ej ; wj := eTj
4. For i = 1, . . . , j − 1, Do

5. αi := −wiA∗j
di

; βi := −Aj∗zi
di

6. zj := zj − αizi; wj := wj − βiwi

7. EndDo

8. dj := wjAzj
9. EndDo

Some observation can be posed here. Multiplying both sides of (4) by wjA
from the left yields dj = wjA∗j . In the same manner, we have dj = Aj∗zj .
Hence one can use this relation in step 8 of the above algorithm, avoiding matrix-
vector multiplication. For symmetric matrices, we have W = ZT . Hence the
computational cost is halved. If, moreover, A is SPD, then dj = zTj Azj > 0.
Hence the algorithm is well-defined for SPD matrices.

A sparse approximate inverse for the matrix A can be computed by incorpo-
rating a procedure for sparsifying the newly computed vectors zj and wj in step
6 of the algorithm. To do so, a dropping strategy is applied in two parts. Let
τ > 0 be given tolerance. If |αi| < τ (|βi| < τ) then updating zj (wj) in step
6 of the algorithm is skipped. After updating vectors zj and wj in step 6, their
entries whose absolute values are smaller than τ are dropped. The drop toler-
ance τ = 0.1 is very often the right one based on the numerical results reported
in several papers [2, 5, 15, 19, 20] . Based on this kind of dropping strategy we
can summarized the FFAPINV algorithm as follows.

Algorithm 2: FFAPINV algorithm

1. z1 := e1, w1 := eT1 and d1 := a11
2. For j = 2, . . . , n, Do
3. zj := ej ; wj := eTj
4. For i = 1, . . . , j − 1, Do

5. αi := −wiA∗j
di

; βi := −Aj∗zi
di

6. If |αi| > τ , then zj := zj − αizi
7. If |βi| > τ , then wj := wj − βiwi

8. Drop entries of zj and wj whose absolute

values are smaller than τ

A Sparse Approximate Inverse Preconditioner for NSPD Matrices 1135

9. EndDo

10. dj := wjAzj
11. EndDo

Obviously the FFAPINV algorithm is well-defined for SPD matrices (in exact
arithmetic), since all pivots are always positive, i.e., dj = zTj Azj > 0. When
A is a NSPD matrix, the FFAPINV algorithm can breakdown in consequence
of the occurrence of zero or negative pivot. In the next section, we see that a
modification of this algorithm would be free from breakdown for NSPD matrices.

3. The FFAPINV algorithm for NSPD matrices

We first state and prove the following Lemma.

Lemma 1. Let W and ZT be lower unitriangular matrices such that WAZ = D,
where D = diag(d1, d2, . . . , dn). Then

dj = zTj Azj = wjAw
T
j . (6)

Proof. From WAZ = D, we have ZTAZ = ZTW−1D. Obviously ZTW−1D is
a lower triangular matrix and diag(ZTW−1D) = D. Hence we conclude that
diag(ZTAZ) = D. Therefore dj = zTj Azj , j = 1, 2, . . . , n. The second equality
can be proved in the same manner. 2

Using this lemma a theorem can be stated for NSPD matrices as following.

Theorem 1. Let A be a NSPD matrix and all the assumptions of Lemma 1
hold. Then dj > 0, j = 1, 2, . . . , n.

Proof. From Lemma 1, we have dj = zTj Azj , j = 1, 2, . . . , n. Therefore dj > 0,
since A is a NSPD matrix. 2

This theorem helps us to modify the FFAPINV algorithm for NSPD matrices
(FFAPINV-NSPD) as follows.

Algorithm 3: FFAPINV-NSPD

1. z1 := e1, w1 := eT1 and d1 := a11
2. For j = 2, . . . , n, Do
3. zj := ej ; wj := eTj
4. For i = 1, . . . , j − 1, Do

5. αi := −wiA∗j
di

; βi := −Aj∗zi
di

1136 Davod Khojasteh Salkuyeh

6. If |αi| > τ , then zj := zj − αizi
7. If |βi| > τ , then wj := wj − βiwi

8. Drop entries of zj and wj whose absolute τ
values are smaller than τ

9. EndDo

10. dj := Aj∗zj
11. If dj = 0, then dj := zTj Azj
12. EndDo

To avoid the matrix-vector multiplication in computing dj := zTj Azj , we first

compute dj via dj := Aj∗zj . If dj = 0, then we use dj := zTj Azj . Obviously,
this algorithms is free from breakdown for NSPD matrices in exact arithmetic.
However, very small pivots may occur in computations. In practice, if the abso-
lute value of the computed dj is less than 10−15 then, as it was suggested in [3,
7], we replace it by sgn(dj)× 10−1.

Two propositions have been presented in [20] for exploiting the sparsity pat-
tern of the original matrix for the BFAPINV algorithm. This propositions can
also be used for the FFAPINV algorithm by some simple modifications and we
use them in our computation.

4. Numerical examples

In order to evaluate the effectiveness of the proposed algorithm we apply the
FFAPINV-NSPD algorithm on some NSPD linear systems of equations. All
the numerical experiments presented in this section were computed in double
precision using Fortran PowerStation version 4.0 on a Pentium 4 PC, with a
3.06 GHz CPU and 1.00GB of RAM. We divide this section into three parts.
In the first two parts, we present the numerical results of the FFAPINV-NSPD
algorithm in conjunction with the restarted GMRES with restart every m steps,
namely GMRES(m) algorithm [16, 17] with and without left preconditioning
[16]. CPU timings are all given in seconds and were measured with the function
etime(). The initial guess was always x0 = 0, b was selected such that the exact
solution was x = (1, 1, , . . . , 1)T , and the stopping criterion was

‖b−Axi‖2
‖b‖2 < 10−10.

The maximum number of iterations was 10000. In all the tables a dagger (†)
indicates no convergence of the iterative method. We do not use any scaling or
reordering for the original coefficient matrix.

The first set of the test problems were derived from the five point discretiza-
tion of the following partial differential equation

−(bux)x − (cux)x + dux + (du)x + euy + (eu)y + fu = g,

A Sparse Approximate Inverse Preconditioner for NSPD Matrices 1137

Table 1. Numerical results for the first set of test problems.

No prec. Preconditioned system

Matrix nnz Its Time τ ρ P-time It-time T-time P-Its

PDE4900 24220 173 3.33 0.1 2.29 0.34 0.83 1.17 35
0.2 0.88 0.31 0.93 1.24 44

PDE6400 31680 192 4.86 0.1 2.19 0.56 1.33 1.89 43
0.2 0.88 0.53 1.34 1.87 48

PDE8100 40140 226 7.19 0.1 2.09 0.89 2.22 3.11 57
0.2 0.87 0.86 2.01 2.87 53

PDE10000 49600 258 10.09 0.1 2.00 1.32 2.47 3.79 51
0.2 0.86 1.31 3.70 5.01 79

PDE12100 60060 319 15.64 0.1 1.92 1.93 3.45 5.38 59
0.2 0.84 1.90 5.18 7.08 97

in the unit square (0, 1)× (0, 1), where

b(x, y) = e−xy, c(x, y) = exy, d(x, y) = β(x+ y),

e(x, y) = γ(x+ y), and f(x, y) = 1/(1 + x+ y),

with parameters β = 20 and γ = 0. Note that the matrix A resulting from the
discretization remains NSPD, independent of these parameters [17]. A Fortran
code, say MATPDE, is available at Matrix-Market website [14] for generating
these matrices. Let n be the number of interior nodes on each side of the
square. Using MATPDE and taking n = 70, 80, 90, 100 and 110, we generate
matrices PDE4900, PDE6400, PDE8100, PDE10000 and PDE12100 with orders
4900, 6400, 8100, 10000, and 12100, respectively. The drop tolerances τ = 0.1
and τ = 0.2 were used for preserving the sparsity of the preconditioner. The
numerical results are given in Table 1. For each matrix, the number of nonzero
entries, nnz, and the number of iterations (Its) and time required to solve the
linear system using the GMRES(5) without preconditioning are presented. In
the last six columns of Table 1, the numerical results of solving preconditioned
systems with left preconditioned GMRES(5) algorithm were given. Here, P-
time, It-time, T-time and P-Its stand for the CPU time for constructing the
preconditioner, the required time for the convergence of the GMRES(5) with
left preconditioning, T-time=P-time+It-time and the number of the iterations
for the convergence, respectively. Meanwhile, ρ = (nnz(W) + nnz(Z))/nnz(A),
where nnz(X) means the number of nonzero entries of the matrix X. Numerical
results presented in Table 1 show that the proposed preconditioner is robust
and effective for NSPD linear system of equation. As we see, the proposed
preconditioner reduces the number of required iterations for the convergence by
about a factor 5 for τ = 0.1 and 4 for τ = 0.2.

It is well-known that the matrix A is positive definite if and only if (A+AT)/2
is SPD. Hence, if A is an SPD matrix, then the matrix S = A+0.5L− 0.5LT is
NSPD, where L is the strictly lower triangular part of A. Note that the number

1138 Davod Khojasteh Salkuyeh

Table 2. Numerical results for the second set of test problems.

No prec. Preconditioned system

Matrix n nnz Its Time τ ρ P-time It-time T-time P-Its

BC23 3134 45178 † - 0.05 1.29 0.34 0.45 0.79 6

BC38 8032 355460 † - 0.05 1.15 1.54 1.23 2.77 4

BC18 11948 149090 † - 0.05 1.41 2.81 0.88 3.69 3

BC25 15439 252241 † - 0.05 2.28 3.92 2.26 6.18 5

S1Q1 5489 262411 797 113.9 0.2 1.45 0.91 4.96 5.87 22

S2Q1 5489 263351 † - 0.2 2.94 1.38 6.39 7.77 21

S1T1 5489 217651 † - 0.2 1.64 0.88 1.73 2.61 8

S2T1 5489 217607 † - 0.2 2.78 1.11 4.01 5.12 15

of nonzero entries of A and S are the same. For the second set of numerical
experiments, we consider eight matrices BC23, BC38, BC18, BC25, S1Q1, S2Q1,
S1T1 and S2T1 obtained from applying S on, respectively, matrices BCSSTK23,
BCSSTK38, BCSSTK18, BCSSTK25, S1RMQ4M1, S2RMQ4M1, S1RMT3M1
and S2RMT3M1 taken from Matrix-Market website [14], except for BCSSTK38
which was taken from Tim Davis’s collection [6]. These matrices together with
their generic properties and the numerical results are given in Table 2. All of
the assumptions are as before except that the GMRES(20) was used to solve the
system of linear equations. Numerical results presented in Table 2, show that the
proposed preconditioner greatly reduces the time and iterations to converge. In
fact, GMRES(20) algorithm does not converge for seven of the eight problems.
Whereas GMRES(20) with left preconditioning converges for all of the problems
in very small number of iterations.

For the third set of the numerical experiments, we consider nine out of four-
teen matrices tested in [15] that are the most difficult ones based on the numerical
results in this reference. All of these matrices can be downloaded from Matrix-
Market website or Tim Davis’s collection [6, 14]. We also use the same stopping
criterion and preconditioned iterative solver used in [15], i.e. ‖ri‖2 < 10−6 and
GMRES(10) with right preconditioning, respectively. We first use the sparse ap-
proximate inverse preconditioner computed by the FFAPINV-NSPD algorithm
with τ = 0.1. Numerical results are given in Table 3. All of the other notations
are as before. As the numerical results in this table show the proposed precon-
ditioner is very effective in improving the convergence rate of the GMRES(m)
iterative solver for nine out of the ten test problems. For RJAT04, GMRES(10)
does not converge for preconditioned and unpreconditioned system of linear
equations. Note that the preconditioner density for this matrix is very small
(ρ = 0.17).

Next, for the selected matrices, we compare the numerical results of the pro-
posed preconditioner with that of the AINV-A and SAINV-NS algorithms. Re-
sults of the AINV-A and SAINV-NS preconditioners were extracted from Ta-
ble 2 and Table 5 in [15]. The parameter τ was chosen in such a way that
the FFAPINV-NSPD preconditioner density, ρ, is always less than that of the
AINV-A and SAINV-NS preconditioners. Numerical results in this table show
that the proposed preconditioner usually gives better results than the AINV-A
and SAINV-NS algorithms.

A Sparse Approximate Inverse Preconditioner for NSPD Matrices 1139

Table 3. Numerical results for the FFAPINV-NSPD algorithm
with τ = 0.1 for the third set of test problems.

No prec. Preconditioned system

Matrix n nnz Its Time ρ P-time It-time T-time P-Its

HOR131 434 4710 † - 2.01 0.02 0.02 0.04 6

PDE900 900 4380 22 0.16 2.53 0.02 0.03 0.05 5

SHERMAN4 1104 3786 67 0.58 0.84 0.03 0.13 0.16 14

ADD20 2395 17319 168 3.16 0.35 0.25 0.05 0.30 2

SHERMAN1 1000 3750 520 3.98 1.85 0.02 0.05 0.07 5

PDE2961 2961 14585 44 1.03 2.35 0.13 0.28 0.41 11

RAJAT04 1041 9642 † - 0.17 0.05 - - †
RAJAT12 1879 12926 † - 0.28 0.19 1.28 1.47 79

RAEFSKY1 3242 293409 1071 60.89 0.10 0.31 3.47 3.78 56

RAEFSKY2 3242 293551 524 29.97 0.16 0.38 9.48 9.86 147

Table 4. Numerical results of FFAPINV-NSPD, AINV-A and
SAINV-NS algorithms for the third set of test problems .

FFAPINV-NSPD AINV-A SAINV-NS
Matrix τ ρ Its ρ Its ρ Its

HOR131 0.02 6.52 2 14.44 1 8.8 2
PDE900 0.01 24.83 1 62.9 1 33.61 2
SHERMAN4 0.003 18.84 2 34.77 3 23.18 3
ADD20 0.01 0.86 1 2.66 1 1.8 1
SHERMAN1 0.01 16.00 1 60.8 1 35.08 2
PDE2961 0.0046 64.00 1 151.92 1 71.73 3
RAJAT04 0.0015 6.33 8 9.33 7 6.45 10
RAJAT12 0.002 8.50 2 49.36 3 26.77 4
RAEFSKY1 0.0035 3.71 4 6.17 4 3.94 16
RAEFSKY2 0.005 5.96 5 10.35 † 7.58 9

5. Conclusion

We have presented a variant of the FFAPINV algorithm that is free from
breakdown for NSPD linear system of equations. The proposed preconditioner
is very effective in improving the number of iterations and total CPU time to con-
verge. We have also compared the performance of the proposed preconditioner
with that of the SAINV-NS and A-AINV algorithms. The numerical results
show that our preconditioner usually give better results than the SAINV-NS
and A-AINV algorithms.

6. Acknowledgement

The author is grateful to the anonymous referee for his/her comments which
improved the quality of this paper.

1140 Davod Khojasteh Salkuyeh

References

1. M. Benzi, Preconditioning techniques for large linear systems: A survey, J. of Computa-
tional Physics, 182 (2002) 418-477.

2. M. Benzi, J. K. Cullum, and M. Tuma, and C. D. Meyer, Robust approximate inverse
preconditioning for the conjugate gradient Method, SIAM J. Sci. Comput., 22 (2000) 1318-
1332.

3. M. Benzi, M. Tuma, A comparative study of sparse approximate inverse preconditioners,
Appl. Numer. Math., 30 (1999)305-340.

4. M. Benzi, C. D. Meyer, and M. Tuma, A sparse approximate inverse preconditioner for the
conjugate gradient method, SIAM J. Sci. Comput., 17 (1996) 1135-1149.

5. M. Benzi, M. Tuma, A sparse approximate inverse preconditioner for nonsymmetric linear
systems, SIAM J. Sci. Comput., 19 (1998) 968-994.

6. T. Davis, University of Florida sparse matrix collection, NA Digest, 92(1994),
http://www.cise.ufl.edu/research/sparse/matrices.

7. S. A. Kharchenko, L. Yu. Kolotilina, A. A. Nikishin, A. Yu. Yeremin, A robust AINV-
type method for constructing sparse approximate inverse preconditioners in factored form,
Numer. Linear Algebra With Appl., 8 (2001) 165179.

8. L. Y. Kolotilina and A. Y. Yeremin, Factorized sparse approximate inverse preconditioning
I. Theory, SIAM J. Matrix Anal. Appl., 14 (1993) 45-58.

9. L. Y. Kolotilina and A. Y. Yeremin, Factorized sparse approximate inverse preconditioning
II: Solution of 3D FE systems on massively parallel computers, Int. J. High Speed Comput.,
7 (1995) 191-215.

10. E.-J. Lee and J. Zhang, Fatored approximate inverse preonditioners with dynamic sparsity
patterns, Tehnial Report No.488-07,Department of Computer Science,University of Ken-
tuky, Lexington, KY, 2007.

11. J.-G. Luo, An incomplete inverse as a preconditioner for the conjugate gradient method,
Comput. Math. Appl., 25 (1993) 7379.

12. J.-G. Luo, A new class of decomposition for inverting asymmetric and indefinite matrices,
Comput. Math. Appl., 25 (1993) 95104.

13. J.-G. Luo, A new class of decomposition for symmetric systems, Mechanics Research
Communications, 19 (1992) 159166.

14. Matrix Market page, http://math.nist.gov/MatrixMarket.
15. A. Rafiei and F. Toutounian, New breakdown-free variant of AINV method for nonsym-

metric positive definite matrices, Jornal of Computational and Applied Mathematics, 219
(2008) 72-80.

16. Y. Saad, Iterative Methods for Sparse linear Systems, PWS press, New York, 1995.
17. Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for non-

symmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986) 856-869.
18. H. A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for

the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 12 (1992)
631-644.

19. J. Zhang, A procedure for computing factored approximate inverse, M.Sc. dissertation,
Department of Computer Science, University of Kentucky, 1999.

20. J. Zhang, A sparse approximate inverse technique for parallel preconditioning of general
sparse matrices, Appl. Math. Comput., 130 (2002) 63-85.

Davod Khojasteh Salkuyeh received his B.Sc from Sharif University of Technology,
Tehran, Iran and his M.Sc from Ferdowsi University of Mashhad, Mashhad, Iran. He
received his Ph.D degree under supervision of professor Faezeh Toutounian at Ferdowsi
University of Mashhad in 2003. He is currently an assistant professor of Mathematics at

A Sparse Approximate Inverse Preconditioner for NSPD Matrices 1141

University of Mohaghegh Ardabili, Ardabil, Iran. His research interests are mainly iterative
methods for large sparse linear systems of equations and error analysis.

Department of Mathematics, University of Mohaghegh Ardabili,
P. O. Box. 179, Ardabil, Iran.
e-mail: khojaste@uma.ac.ir

