• 제목/요약/키워드: iterative equation

검색결과 321건 처리시간 0.023초

DDM과 경계요쇼법을 이용한 동탄성 해석 (Transient Elastodynamic Analysis By BEM Using DDM)

  • 신동훈;박한규;박경호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.534-535
    • /
    • 2009
  • This paper deals with BEM analysis of transient elastodynamic problems using domain decomposition method and particular integrals. The particular method is used to approximate the acceleration term in the governing equation. The domain decomposition method is examined to consider multi-region problems. The domain of the original problem is subdivided into sub-regions, which are modeled by the particular integral BEM. The iterative coupling employing Schwarz algorithm is used for the successive update of the interface boundary conditions until convergence is achieved. The numerical results, compared with those by ABAQUS, demonstrate the validity of the present formulation.

  • PDF

AN IMPULSIVE STAGE-STRUCTURED OPTIMAL CONTROL PROBLEM AND OPTIMAL HARVEST STRATEGY OF PACIFIC COD, GADUS MICROCEPHALUS, IN THE SOUTH KOREA

  • Cho, Giphil;Jeong, Yong Dam;Kim, Sangil;Jung, Il Hyo
    • East Asian mathematical journal
    • /
    • 제34권5호
    • /
    • pp.683-691
    • /
    • 2018
  • We consider an optimal control problem for an impulsive stage-structured model involving ordinary differential equations with impulsive values of initial conditions in the next year. The main goal is to maximize a profit of the catch of Pacific cod in the South Korea through optimal harvest strategy as a control of adult cod. We established necessary conditions for the optimal harvest control using idea of Pontryagin's maximum principle. The optimal harvest strategy is to numerically solve the equation by using an iterative method with the Runge-Kutta method. Finally, we compare a monthly average of fishing mortality of Pacific cod from 2013 to 2017 with monthly fishing mortality for result obtained optimal harvest strategy.

Geometrical nonlinear bending characteristics of SWCNTRC doubly curved shell panels

  • Chavan, Shivaji G.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • 제5권1호
    • /
    • pp.21-49
    • /
    • 2018
  • In this paper, geometric nonlinear bending characteristics of single wall carbon nanotube reinforced composite (SWCNTRC) doubly curved shell panels subjected to uniform transversely loadings are investigated. The nonlinear mathematical model is developed for doubly curved SWCNTRC shell panel on the basis of higher-order shear deformation theory and Green- Lagrange nonlinearity. All nonlinear higher order terms are included in the mathematical model. The effective material properties of SWCNTRC are estimated by using Eshelby-Mori-Tanaka micromechanical approach. The governing equation of the shell panel is obtained using the total potential energy principle and a Newton-Raphson iterative method is employed to compute the nonlinear displacement and stresses. The present results are compared with published literature. The effect of SWCNT volume fraction, width-to-thickness ratio, radius-to-width ratio (R/a), boundary condition, linear and nonlinear deflection, stresses and different types of shell geometry on nonlinear bending response is investigated.

Form-finding analysis of suspension bridges using an explicit Iterative approach

  • Cao, Hongyou;Zhou, Yun-Lai;Chen, Zhijun;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.85-95
    • /
    • 2017
  • This paper presents an explicit analytical iteration method for form-finding analysis of suspension bridges. By extending the conventional analytical form-finding method predicated on the elastic catenary theory, two nonlinear governing equations are derived for calculating the accurate unstrained lengths of the entire cable systems both the main cable and the hangers. And for the gradient-based iteration method, the derivation of explicit calculation for the Jacobian matrix while solving the nonlinear governing equation enhances the computational efficiency. The results from sensitivity analysis show well performance of the explicit Jacobian matrix compared with the traditional finite difference method. According to two numerical examples of long span suspension bridges studied, the proposed method is also compared with those reported approaches or the fundamental criterions in suspension bridge structural analysis, which eventually confirms the accuracy and efficiency of the proposed approach.

Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers

  • Singh, Vijay K.;Panda, Subrata K.
    • Smart Structures and Systems
    • /
    • 제16권5호
    • /
    • pp.853-872
    • /
    • 2015
  • Numerical analysis of large amplitude free vibration behaviour of laminated composite spherical shell panel embedded with the piezoelectric layer is presented in this article. For the investigation purpose, a general nonlinear mathematical model has been developed using higher order shear deformation mid-plane kinematics and Green-Lagrange nonlinearity. In addition, all the nonlinear higher order terms are included in the present mathematical model to achieve any general case. The nonlinear governing equation of freely vibrated shell panel is obtained using Hamilton's principle and discretised using isoparametric finite element steps. The desired nonlinear solutions are computed numerically through a direct iterative method. The validity of present nonlinear model has been checked by comparing the responses to those available published literature. In order to examine the efficacy and applicability of the present developed model, few numerical examples are solved for different geometrical parameters (fibre orientation, thickness ratio, aspect ratio, curvature ratio, support conditions and amplitude ratio) with and/or without piezo embedded layers and discussed in details.

탄성체를 포함하는 마운트계의 동역학 해석 프로그램 개발 (Development of a Computer Program for the Dynamic Analysis of Mount System with Flexible Bodies)

  • 이병훈;김경우;정우진
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.94-102
    • /
    • 2000
  • A computer program for three dimensional dynamic analysis of a mount system composed of rigid or flexible bodies and mount elements is developed. Cartesian coordinates and Euler parameters are used to specify the positions and orientations of the bodies. The equations of motion are formulated using Langrange equation and Langrange multiplier technique. The developed program includes routine, for inclined mount elements, several kinds of driving constrains, and external forces. The Static equilibrium analysis routine is also developed using iterative method.

엔트로피 극대화 통행배분모형의 효율적 해법 개발 (Development of an Efficient Solution Method for the Wilson's Trip Distribution Model)

  • 노정현
    • 대한교통학회지
    • /
    • 제9권2호
    • /
    • pp.121-126
    • /
    • 1991
  • Wilson made an importent contribution to develop a trip distribution model with the general form of gravity model which is an entropy maximization program. Also Wilson suggested a technique which is called the "iterative balancing method" for soving the model. This te-chnique however is not stable to find solution because it is a heuristic method and sometimes does not converge to the correct solution. In this paper a new solution method using a numerical method for solving the non-linear simultaneous equation system is developed and evaluated in both computers VAX 8700 and PC/AT 286 The result of this method and Wilson's method are compared with each other. Wilson's method resulted in inferior solutions measured by the final norm of residuals.

  • PDF

A Structural Damage Identification Method Based on Spectral Element Model and Frequency Response Function

  • Lee, U-Sik;Min, Seung-Gyu;Kwon, Oh-Yang
    • 비파괴검사학회지
    • /
    • 제23권6호
    • /
    • pp.559-565
    • /
    • 2003
  • A spectral element model-based structural damage identification method (SDIM) was derived in the previous study by using the damage-induced changes in frequency response functions. However the previous SDIM often provides poor damage identification results because the nonlinear effect of damage magnitude was not taken into account. Thus, this paper improves the previous SDIM by taking into account the nonlinear effect of damage magnitude. Accordingly an iterative solution method is used in this study to solve the nonlinear matrix equation for local damages distribution. The present SDIM is evaluated through the numerically simulated damage identification tests.

Finite Element Numerical Analysis on Tidal Characteristic Changes due to Seadike Construction

  • Kwun, Soon-Kuk;Na, Jeong-Woo;Chang, Hyun-Jin
    • 한국농공학회지
    • /
    • 제39권2호
    • /
    • pp.19-25
    • /
    • 1997
  • Abstract [] The prediction of changes in the tidal regime due to the sea dike closure in the Saemankum area was performed using the nonlinear finite element model, TIDE. Based upon an overall comparison of calibrated model results with available field data, the TIDE model behaves well and is good representation of the hydrodynamic of the Saemankum tidal project area. It is shown that the TIDE model does an excellent job of computing the changes of tidal characteristics resulting in sea dike closure in an estuary area.

  • PDF

Iterative Analysis for Nonlinear Laminated Rectangular Plates by Finite Difference Method

  • Kim, Chi Kyung
    • International Journal of Safety
    • /
    • 제1권1호
    • /
    • pp.13-17
    • /
    • 2002
  • A new system of equations governing the nonlinear thin laminated plates with large deflections using von Karman equations is derived. The effects of transverse shear in the thin interlayer are included as part of the analysis. The finite difference method is used to perform the geometrically nonlinear behavior of the plate. The resultant equations permit the analysis of the effect of transverse shear stress deformation on the overall behavior of the interlayer using the load incremental method. For the purpose of feasibility and validity of this present method, the numerical results are compared with other available solutions for accuracy as well as efficiency. The solution techniques have been implemented and the numerical results of example problem are discussed and evaluated.