Acknowledgement
Supported by : Department of Science and Technology (DST)
References
- Arefi, M. and Khoshgoftar, M.J. (2014), "Comprehensive piezo-thermo-elastic analysis of a thick hollow spherical shell", Smart Struct. Syst., 14(2), 225-246. https://doi.org/10.12989/sss.2014.14.2.225
- Arefi, M. and Rahimi, G.H. (2011), "Nonlinear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart Struct. Syst., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433
- Benjeddou, A. (2000), "Advances in piezoelectric finite element modeling of adaptive structural elements: a survey", Comput. Struct., 76, 347-363. https://doi.org/10.1016/S0045-7949(99)00151-0
- Balamurugan, V. and Narayanan, S. (2001), "Shell finite element for smart piezoelectric composite plate/shell structures and its application to the study of active vibration control", Finite Elem. Anal. Des., 37, 713-738. https://doi.org/10.1016/S0168-874X(00)00070-6
- Balamurugan, V. and Narayanan, S. (2009), "Multilayer higher order piezlaminated smart composite shell finite element and its application to active vibration control", J. Intell. Mat. Syst. Str., 20, DOI: 10.1177/1045389x08095269.
- Benjeddou, A. Deu, J.F. and Letombe, S. (2002), "Free vibrations of simply-supported piezoelectric adaptive plates: an exact sandwich formulation", Thin Wall. Struct., 40, 573-593. https://doi.org/10.1016/S0263-8231(02)00013-7
- Carrera, E., Brischetto, S. and Nali P (2011), Plates and Shells for Smart Structures: Classical and Advanced Theories for Modeling and Analysis, (1st Ed.), John Wiley & Sons Ltd, United Kingdom.
- Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2009), Concepts and applications of finite element analysis, (4th Ed.), John Wiley & Sons, Singapore.
- Chakravorty, D. Bandyopadhyay, J.N. and Sinha P.K. (1996), "Finite element free vibration analysis of doubly curved laminated composite shells", J. Sound Vib., 191(4) 491-504. https://doi.org/10.1006/jsvi.1996.0136
- Dash, P. and Singh, B.N. (2009), "Nonlinear free vibration of piezoelectric laminated composite plate", Finite Elem. Anal. Des., 45, 686-694. https://doi.org/10.1016/j.finel.2009.05.004
- Heyliger, P. and Brooks, S. (1995), "Free vibration of piezoelectric laminates in cylindrical bending", Int. J. Solids Struct., 32(20), 2945-2960. https://doi.org/10.1016/0020-7683(94)00270-7
- Huang, X.L. and Shen, H.S. (2005), "Nonlinear free and forced vibration of simply supported shear deformable laminated plates with piezoelectric actuators", Int. J. Mech. Sci., 47, 187-208. https://doi.org/10.1016/j.ijmecsci.2005.01.003
- Huang, D. and Sun, B.H. (2001), "Approximate solution on smart composite beams by using MATLAB", Compos. Struct., 54, 197-205. https://doi.org/10.1016/S0263-8223(01)00088-5
- Kattimani, S.C. and Ray, M.C. (2014), "Active control of large amplitude vibrations of smart magneto-electro-elastic doubly curved shells", Int. J. Mech. Mater. Des., DOI: 10.1007/s10999-014-9252-3.
- Kerur, S.B. and Ghosh A. (2011), "Active control of geometrically non-linear transient response of smart laminated composite plate integrated with AFC actuator and PVDF sensor", J. Intell. Mat. Syst. Str., 22, 1149-1160. https://doi.org/10.1177/1045389X11414222
- Kulkarni S.A. and Bajoria K.M. (2007), "Large deformation analysis of piezolaminated smart structures using higher-order shear deformation theory", Smart Mater. Struct., 16, 1506-1516. https://doi.org/10.1088/0964-1726/16/5/002
- Lee, S.J. and Reddy, J.N. (2004), "Vibration suppression of laminated shell structures investigated using higher order shear deformation theory", Smart Mater. Struct., 13, 1176-1119. https://doi.org/10.1088/0964-1726/13/5/022
- Lee, S.J., Reddy, J.N. and Rostam-Abadi, F. (2006), "Nonlinear finite element analysis of laminated composite shells with actuating layers", Finite Elem. Anal. Des., 43, 1-21. https://doi.org/10.1016/j.finel.2006.04.008
- Nanda, N. (2010), "Non-linear free and forced vibrations of piezoelectric laminated shells in thermal environments", The IES Journal Part A: Civil & Structural Engineering, 3(3), 147-160. https://doi.org/10.1080/19373260.2010.490329
- Rafiee, M., Mohammadi, M., Aragh, B.S. and Yaghoobi, H. (2013), "Nonlinear free and forced thermo-electro-aero-elastic vibration and dynamic response of piezoelectric functionally graded laminated composite shells Part II: Numerical results", Compos. Struct., 103, 188-196. https://doi.org/10.1016/j.compstruct.2012.12.050
- Ramirez, F., Heyliger, P.R. and Pan, E. (2006), "Free vibration response of two-dimensional magneto-electro-elastic laminated plates", J. Sound Vib., 292, 626-644. https://doi.org/10.1016/j.jsv.2005.08.004
- Reddy, J.N. (1999), "On laminated composite plates with integrated sensors and actuators", Eng. Struct., 21, 568-593. https://doi.org/10.1016/S0141-0296(97)00212-5
- Reddy, J.N. (2004), "Mechanics of laminated composite plates and shells: Theory and Analysis", (2nd Edition), CRC Press, Boca Raton, Florida, FL, USA.
- Saravanos, D.A., Heyliger. P.R., and Hopkins, D.A. (1997), "Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates", Int. J. Solids Struct., 34(3), 359-378. https://doi.org/10.1016/S0020-7683(96)00012-1
- Sarangi, S.K. and Ray, M.C. (2011), "Active damping of geometrically nonlinear vibrations of doubly curved laminated composite shells", Compos. Struct., 93, 3216-3228. https://doi.org/10.1016/j.compstruct.2011.06.005
- Sarangi, S.K. and Ray, M.C. (2010), "Smart damping of geometrically nonlinear vibrations of laminated composite beams using vertically reinforced 1-3 piezoelectric composites", Smart Mater. Struct., 19(075020), 1-14.
- Singh, V.K. and Panda S.K. (2014), "Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels", Thin Wall. Struct., 85, 341-349. https://doi.org/10.1016/j.tws.2014.09.003
- Xu, K., Noor, A.K. and Tang, Y.Y. (1997), "Three-dimensional solutions for free vibrations of initially-stressed thermoelectroelastic multilayered plates", Comput. Method. Appl. M., 141, 125-139. https://doi.org/10.1016/S0045-7825(96)01065-1
Cited by
- Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.787
- Free vibration analysis of a hard-coating cantilever cylindrical shell with elastic constraints vol.63, 2017, https://doi.org/10.1016/j.ast.2017.01.002
- Geometrical nonlinear free vibration responses of FG-CNT reinforced composite annular sector plates integrated with piezoelectric layers vol.171, 2017, https://doi.org/10.1016/j.compstruct.2017.01.048
- Free vibration analysis of combined composite laminated cylindrical and spherical shells with arbitrary boundary conditions pp.1537-6532, 2021, https://doi.org/10.1080/15376494.2018.1553258
- Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT vol.19, pp.3, 2015, https://doi.org/10.12989/sss.2017.19.3.289
- A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates vol.62, pp.4, 2017, https://doi.org/10.12989/sem.2017.62.4.401
- Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
- An original HSDT for free vibration analysis of functionally graded plates vol.25, pp.6, 2015, https://doi.org/10.12989/scs.2017.25.6.735
- Free Vibration Analysis of Functionally Graded Spherical Torus Structure with Uniform Variable Thickness along Axial Direction vol.2019, pp.None, 2015, https://doi.org/10.1155/2019/2803841
- Chaotic dynamics of a non-autonomous nonlinear system for a smart composite shell subjected to the hygro-thermal environment vol.25, pp.7, 2019, https://doi.org/10.1007/s00542-018-4206-6
- Free Vibration Characteristics of Moderately Thick Spherical Shell with General Boundary Conditions Based on Ritz Method vol.2020, pp.None, 2015, https://doi.org/10.1155/2020/4130103
- The effect of voltage and nanoparticles on the vibration of sandwich nanocomposite smart plates vol.34, pp.5, 2015, https://doi.org/10.12989/scs.2020.34.5.733
- Experimental investigation of self-healing concrete after crack using nano-capsules including polymeric shell and nanoparticles core vol.25, pp.3, 2015, https://doi.org/10.12989/sss.2020.25.3.337
- Buckling response of smart plates reinforced by nanoparticles utilizing analytical method vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.001
- A mathematical approach for the effect of the rotation on thermal stresses in the piezo-electric homogeneous material vol.25, pp.5, 2020, https://doi.org/10.12989/cac.2020.25.5.471
- Response of angle-ply laminated cylindrical shells with surface-bonded piezoelectric layers vol.76, pp.5, 2015, https://doi.org/10.12989/sem.2020.76.5.599
- An analytical solution for equations and the dynamical behavior of the orthotropic elastic material vol.11, pp.4, 2021, https://doi.org/10.12989/acc.2021.11.4.315
- On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2015, https://doi.org/10.12989/scs.2021.39.2.149
- Mathematical approach for the effect of the rotation, the magnetic field and the initial stress in the non-homogeneous an elastic hollow cylinder vol.79, pp.5, 2015, https://doi.org/10.12989/sem.2021.79.5.593