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A Structural Damage Identification Method Based on
Spectral Element Model and Frequency Response Function
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Abstract A spectral element model-based structural damage identification method (SDIM) was derived in the
previous study by using the damage-induced changes in frequency response functions. However the previous

SDIM often provides poor damage identification results because the nonlinear effect of damage magnitude was

not taken into account. Thus, this paper improves the previous SDIM by taking into account the nonlinear
effect of damage magnitude. Accordingly an iterative solution method is used in this study to solve the
nonlinear matrix equation for local damages distribution. The present SDIM is evaluated through the

numerically simulated damage identification tests.
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1. Introduction

Structural ~ damages generated within a
structure may lead to the changes in the dynamic
characteristics of a structure such as the vibration
response, natural frequencies, mode shapes and
modal damping, which in turn can be used to
detect, locate and quantify the damages. Thus, a
variety of structural damage identification methods
(SDIMs) has been appeared in the literature.

The existing SDIMs can be classified into
some groups depending on what experimental
data are used in the methods. They include the
changes in the modal parameters (Adams et al.,

1978; Cempel et al., 1992; GCriffin and Sun,

1991), strain energy (Cornwell et al, 1999),
transfer  function parameters (Lew, 1995),
flexibility matrix (Pandey and Biswas, 1995),
residual forces (Ricles and Kosmatka, 1992),
wave characteristics (Feroz and Oyadiji, 1999),
mechanical impedances (Wong et al, 1993),

spectral element model, frequency response function,

frequency function (FRF) data
(Thyagarajan, 1998) and so forth. As discussed

by Banks et al. (1996), the modal-parameters-

response

based SDIMs may have some shortcomings. First
the modal data can be contaminated by
measurement errors and modal extraction errors
because they are indirectly measured test data.
Second, the completeness of modal parameters
cannot be met in most practical cases because
they often require a large number of sensors. On
the other hand, using measured FRF-data may
have certain advantages over using the modal
parameters. First the modal parameters will not
be contaminated by the modal extraction errors
because they are measured directly from
structures. Second the FRF-data can provide

much more damage information in a desired
frequency range than modal parameters which are
extracted from a very limited number of
FRF-data around resonance (Wang et al. 1997).

Thus, it seems to be very promising to use the
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FRF-data for
structure.

identifying damages within a

It can be found from a thorough literature
survey that most SDIMs have been derived from
conventional finite element model-based eigenvalue
problems. As a drawback of conventional finite
element method (FEM), very fine meshes should
be used to obtain satisfactory dynamic solutions,
especially at high frequency, which may result in
significant increases of computation costs and
time. In contrast with the conventional FEM, the
spectral element method (SEM) is often justifiably
referred to as an exact element method in the
literature because it provides exact dynamic
characteristics and responses by using only one
finite element for a uniform structure member,
regardless of its length (Doyle, 1997; Lee at al.,
2000). This is possible because the exact dynamic
element stiffness matrix, often called ‘spectral
clement matrix’ in the literature, is used in SEM.
The exact dynamic element stiffness matrix is
formulated from the frequency-dependent exact
shape functions satisfying governing equations.

Motivated from the aforementioned
advantages of the FRF-data and SEM over the
modal parameters and conventional FEM, a
SEM-based SDIM was derived in the authors’
previous study (Lee and Shin, 2002). However,
the SEM-based SDIM often provides poor damage
identification results because the nonlinear effect
of damage magnitude was neglected in the
formulation of damage identification algorithm.
Thus, a modified SEM-based SDIM is developed
in this paper by taking into account the nonlinear
terms with respect to damage magnitudes.

2. Modified Damage ldentification Algorithm

The dynamic stiffness equation for a structure
in the intact state can be represented by (Lee and
Shin, 2002)

[s () {U (@ )}={P ()} (1

where « is the circular frequency and [S] and
{U} are the dynamic stiffness matrix and the

spectral components of the nodal degrees of
freedom vector (simply, nodal DOFs vector) of
the intact structure, respectively. Note that the
dynamic stiffness matrix is frequency-dependent.
The vector {P} is the spectral components of the
external nodal forces vector (simply, nodal forces
vector). Assuming the structure gets damaged, but
still subjected to the same nodal forces as in Eq.
stiffness
structure in the damaged state can be represented

by
[S(0)[{U(a)}={P(w)} )

where [S] and {U} are the dynamic stiffness
matrix and the spectral nodal DOFs vector for
damaged structure, respectively.

In this study, the matrix [S] is considered as

(1), the dynamic equation for the

the known quantity because it will be so
determined that Eq. (1) represents the refined
structure model for the intact structure. By the
word ‘refined’, we mean that the experimentally
measured and analytically predicted structural

dynamic characteristics are in good agreement.

The (spectral) nodal DOFs vector {ﬁ} is also
considered as a known quantity because it will be

measured directly from the damaged structure in
practice. However the matrix lgl is not known in
because it will

advance depend on the

not-yet-known current state of damage. Assume

the matrix [S] can be expressed in the form
[S(0)]=[s(e)]+ [a8(a)] 3)

where [A4S] is the perturbed dynamic stiffness
matrix generated by the presence of damage.
Substituting Eq. (3) into Eq. (2) gives
{P(0)}-[s(e){U(0)}= (a8 (0 ){U (0 )}
“4)

The nodal forces vector {P} can be written in
the partitioned-vector form as

N RS
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where {0} denotes the null vector. In a manner
compatible with Eq. (5), the vector {6} can be
partitioned into a set {U. } termed ‘master’ nodal
DOFs vector, which is to be retained, and a set

{ﬁs} termed ‘slave’ nodal DOFs vector, which are

to be eliminated to reduce the number of nodal
DOFs as follows:

{U(e)}- {ﬁﬁ ((jj ))} (6)

Similarly, the matrices [S] and [§J can be

expressed in the forms

S (@) S, (@)
[S(w)]—[sm(w) S“(w)} )
— Sun (@) Se (@)
S 1> >
[S (] [Sm(w) S“(w)] (®)

By substituting Egs. (5), (6) and (8) into Eq.
(2), the nodal DOFs vector {0} can be expressed

in terms of {U.} only as follows:
{U(0)}=[T (o) {T. (@)} ©)

where [T(w)] is the coordinates transformation

matrix for damaged structure, given by

[T(0)]=[T(0)]+[aT(0)] (10)
where

- o] ] 0] an
[t(w)]=-[s, ]"[s. ] (12)

[At(w)]=[c it]+[tllc,, I+ Ttllc.. ] a3)
[c,]=-[s.1"[as, I(]+[s, ] [as ])" (14)

c.l=Is.]1"[as,] (15)

Substituting Eq. (10) into Eq. (9) and then
into Eq. (4), and applying Egs. (5), (7) and (11)
yields

{o)+ —x(0)l{A, (@)}= - [¥ @A, (@)}

(16)
where
[X(o)]=[s,, ]+ [s,. IMt] (17)
Y (@)]=(1s,)+[as, 18] a8 }{[s.]+1as. D) * (I8, ) +1as. ]
~(s.J+las, D)s.]" [as, ]+ [as ]-[as ][s.]" [s..]

In Eq. (16), {An} is the inertance FRF, which is
defined as the ratio of the acceleration to the
applied force (Ewins, 1984), and {§} is the
nodal forces locator vector that has unit values at
the components corresponding to non-zero nodal
forces.

The matrix [Y(@)] defined by Eq. (18) is the
nonlinear function of unknown damage magnitudes
and can be expressed as the sum of the linear
part [Yo] and the nonlincar part [Yni] as follows:

[Y(0)]=[Y, ()] +[Y, (0)] (19)
where
[Y,(0)] =[] [as]T] (20)

LY, ()]

I
=
S
=
=
s

21

In the previous study by Lee and Shin (2002),
the nonlinear part [Yn.] was neglected by
assuming local damages are small enough. This
approximation is often found to provide poor
damage identification results. Thus, in this study,
the nonlinear part [Yn.] will be retained to obtain
an improved damage identification algorithm.
The dynamic stiffness matrix [S] for a
complete structure can be obtained by assembling
all dynamic element stiffness matrices as follows:

[s(w)]=3[L, ]T[svk(w ), ] (22)

&
where N is the number of finite element and [si]
is the dynamic eclement stiffness matrix for the
kth finite element. The matrix [Ly] is the locator
matrix which locates the components of [si] into
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[S] for the assembly. Similarly the perturbed
dynamic stiffness matrix [4S] can be obtained
from

[as(e)]=3 L, 1" [as, ()L, ] (23)

where [4si] is the perturbed dynamic element
kth  finite element.
As discussed in the previous work (Lee and

stiffness matrix for the

Shin, 2002), by representing a finite element
having non-uniform local damages inside as the
finite element with effective uniform damage
through the whole finite element, the perturbed
dynamic element stiffness matrix [4s«] can be
approximated as

[As,(#)] =D, [s,(@=0)]=-D, [k, ] (24)

where [ki] and Dy are the conventional finite
element stiffness matrix and effective uniform
damage magnitute for the the kth finite element,
respectively.

By using Eqs. (19) through (21) and (23), the
right-hand side of Eq. (16) can be expressed as
RHS of Eq.(16)=[®(w)[{D }+ {R(w,D)}

(25)

where

[0(0)]=[0(0) 0(0) ..

(=0 o .. 0

(R(aD)}=—[Y,(aD)}{A,(0)}

{00} =— (L) T(0)) [ ML T @) A, (o)}
(26)

(PN( w)]

Finally, replacing the right-hand side of Eq.
(16) with the expression of Eq. (25) gives

[®(2)[{D}={B(0)}- {R(e,D)} @7

where
B0)}={}+[x(@)Ha. (@)} @8

Equation (27) represents the matrix equation for
the modified
algorithm to be used in the present study.

structural damage identification

The nonlinear terms with respect to damage
magnitudes are retained in the vector {R}.
Because the vector {R} is the nonlinear
function of the unknown damage magnitudes
vector {D}, Eq. (27) is certainly a nonlinear
matrix equation for the damage magnitudes vector
{D}. Accordingly, a direct iteration method shown
in Fig. 1 is used in this study to solve Eq. (27)
for {D}. The damage magnitudes solved from the
linearized matrix equation, which can be derived
from Eq. (27) by simply neglecting the nonlinear
term {R}, are used as the initial guess of {D}
required to initiate the iterative computation.

START

Fig. 1 A direct iterative solution procedure used for
the present structural damage identification
method

The convergence of predicted damage is
measured by using the parameter & which is
defined as the root mean squared (RMS) value of
the differences between the results obtained at the
previous and current iteration steps. In Fig. 1, N
denotes the total number of finite elements used
in the damage identification analysis, Dy is the
predicted damage magnitude in the 4th finite
element, and the superscript i represents the ith
step of iteration. The iteration will be stopped
when the value of & becomes less than a
pre-specified small limit value.
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To measure the accuracy of the predicted
damage magnitudes, the damage identification
error (DIE) defined by

DIE Edl—
L 7

is used. In Eq. (29), L is the length of beam,
D; is the damage magnitude in the jth finite
element of length /, the superscripts 'True' and
'Pred denote the true

LD -pr) (29)

i J

7 M2

1

values and
predicted values, respectively. Accordingly, as
the value of DIE becomes smaller, the predicted
damage state is getting closer to the true state.

damage

3. Numerical Results and Discussion

To evaluate the feasibility of the present
modified SDIM, compared with the previous
linear version of SDIM (Lee and Shin, 2002), a
cantilevered Euler-beam as shown in Fig. 2 is
considered as an illustrative example. The beam
has the length L = 0.4m, the bending rigidity £
= 14.6N-m’, and the mass density per length o
A = 0275kg/m. When the beam is considered to
be divided into 81 equal sized finite elements,
three local damages having magnitudes Dy = 0.4,
D, = 05, and D; = 0.3 are assumed to be
located at the 14th, 4lIst, and 68th finite
elements from the clamped root, and then the
present and previous damage identification
methods are applied to inversely identify them.
The dynamic element stiffness matrix for the
intact Euler beam, which is required in Eq. (27),

is given by (Doyle, 1997; Lee et al, 2000)

«EI S8,
o)l g 3 3] GO
where
[s, ]= —x*(Ch-s+Sh-¢) —Kk-Sh-s
371 _cShes —(Ch-s—Sh-o)

[s. ] = k*(Sh +s) —«(Ch —¢)
77l (Ch —¢) —(Sh —5) €2y

s ]_[—Kz(Ch~s+Sh-c)

k-Sh-s
x-Sh-s —(Ch-s—Sh-c)

with the use of following definitions
s=sinkl, c=cosxl, Sh=sinhkl, Ch=coshxl (32)

Table 1
before and after damage. In general, the local

compares the natural frequencies

damages are found to reduce the natural
frequencies in magnitude due to the degradation
of structural stiffness. In Fig. 3, the inertance
FRF measured at x = L/3 in the intact state is
compared with that measured in the damaged
state. Figure 3 shows that local damages shift the
resonance peaks to the lower frequencies, which

can be readily expected from Table 1.

Table 1 Damage-induced changes in the natural
frequencies (Hz)
Modes Intact Damaged % decrease
1st 25.70 25.38 1.24
2nd 161.08 157.18 2.42
3rd 451.04 449.55 0.33
4th 883.85 865.22 2.10
sth | 1461.07 1442.45 127
D, =05
D,=0.4
D;=0.3
ROOT FREE END
0o Y oz Y B
X )

Fig. 2 Example problem for the numerical tests of
the present structural damage identification
method

- intact |
10° ~ Damaged 1

Inertance FRF (ms2 i N)

500 1000 1500
Frequency (Hz)

Fig. 3 Inertance frequency response functions at x =
0.133m; ... , the intact state; , the
damaged state
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Table 2 shows how the predicted damage
magnitudes, parameter ¢ and the value of DIE
vary as the number of iteration s is increased. In
Table 1, the damage magnitudes given in the first
row are the initial guesses of damage magnitudes,
which are obtained by using the linear SDIM. It
is shown that, as the number of iterations is
increased up to fifteen, the predicted damage
magnitudes almost converge to the true values,
while ¢ and DIE are decreased to the values
very close to zero. Using the damage magnitudes
predicted by the linear SDIM as the initial
guesses (for iterative damage identification process)
is found to provide converged satisfactory damage
identification results.

Table 2 Convergence of the damage identification
results

X Damage Magnitudes
Iteration £ DIE
Dy D, D;

Tnitial | 0.469 | 0.612 | 0.335 - 2.07x102
Ist | 0371 | 0435|0293 |3.71 %1072 | 1.70 x 102
2nd | 0410 | 0.530 | 0.300 | 2.60%x 107 [ 9.14 % 107
3rd | 0396 | 0.485 | 0.300 | 1.45% 107 | 5.40 % 10°
7th | 0.400 | 0.499 | 0.300 | 1.28x 10™ | 3.81 x 10
15th | 0.400 | 0.500 | 0.300 | 5.31x10° | 1.69x 10

In Fig. 4, the damage identification results
obtained by SDIM  are
compared with those obtained by using the
previous linear SDIM (Lee and Shin, 2002). To
compute the inertance FRF in the damaged state,

using the present

the exciting frequency is chosen as 25Hz. Figure
4 certainly shows that the present SDIM predicts
quite accurate damage magnitudes (0.40, 0.50,
0.30) at three damaged sites when compared with
the predictions (0.47, 0.61, 0.33) by the previous
linear SDIM (Lee and Shin, 2002). This
improvement of damage identification is mainly
attributed to including the nonlinear effects of
damage magnitudes in the present improved
SIDM. Additional damage identification tests for
different excitation frequencies also show that the
present SDIM is much superior to the previous
linear SDIM (Lee and Shin, 2002). It is also

found that, when compared with the previous
linear SDIM, the present SDIM is less sensitive
to the choice of excitation frequency even though
the damage are slightly
dependent on the chosen excitation frequency.

‘: ‘: [ Linear
; : R Nonlinear fpresent)

identification results

Damage Magnitude D

N i i i i i
0 0.05 [ 015 0.2 0.25 03 0.35 0.4
Damage Location (m)

Fig. 4 Comparison of the damage identification
results obtained by the present nonlinear
method and the previous linear method (Lee
and Shin, 2002)

4. Conclusion

An improved FRF-data/SEM-model based
SDIM is developed by taking into account the
nonlinear effect of damage magnitude, which was
neglected in the previous work. The present
SDIM is then evaluated through an illustrative
example problem: a cantilevered Euler-beam with
three local damages. First, it is shown that natural
frequencies are decreased in magnitude due to the
presence of damages. Through the numerically
simulated damage identification tests, it is then
proved that the present SDIM is much superior to
the previous linear SDIM for identifying the
pre-specified local damages and that it is less
sensitive to the choice of excitation frequency.
An experimental study to verify the present
SDIM as well as to confirm the above results
will be in the due course.
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