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Abstract : A new system of equations governing the nonlinear thin laminated plates with large deflections using
von Karman equations is derived. The effects of transverse shear in the thin interlayer are included as part of the
analysis. The finite difference method is used to perform the geometrically nonlinear behavior of the plate. The
resultant equations permit the analysis of the effect of transverse shear stress deformation on the overall behavior of
the interlayer using the load incremental method. For the purpose of feasibility and validity of this present method,
the numerical results are compared with other available solutions for accuracy as well as efficiency. The solution
techniques have been implemented and the numerical results of example problem are discussed and evaluated.
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1. Introduction

Today, an increasing number of structural designs,
especially in the aerospace industry, are utilizing lami-
nated construction in the fabrication of major structural
components. The substantial interest in these new high-
strength and low-density materials in laminate construc-
tion is evidence of the continual quest for strong light-
weight structures. Laminated plate can be manufactured
in a wide variety of products to meet demands of build-
ing codes for safety, lighting, sound, and color. It is
used widely in automobiles and aircraft, as safety
plates, and in many architectural applications. A lami-
nated plates unit consists of two plates connected by a
thin elastometric interlayer. The interlayer has a very
low modulus of elasticity relative to the face plates.
Theoretically, this difference in material properties sug-
gests that interlayer may not be capable of transferring
shear between the two plates. If no shear transfer capa-
bility is assumed, laminated plate units could be ana-
lyzed theoretically by considering them to act as a
structural system consisting of two plates that are not
joined. On the other hand, if the interlayer is assumed
to afford complete shear transfer capability between the
plates, laminated plate unit behavior could be approxi-

*Corresponding author: kimchi@incheon.ac.kr

mated by that of a monolithic plate [6, 7]. The analysis
of laminated plate units is made difficult because of sig-
nificant differences in material properties within the
composite section. When a laminated plate unit is
loaded laterally, individual plates are subjected to both
bending and membrane effects in the central region,
while in regions close to the sides, bending effects are
more dominant. Intuitively, the transverse shear affects
stresses in regions near the sides of the unit to a larger
degree than in regions near the center of the unit. Since
the contribution to bending resistance by the interlayer
is small, bending resistance of the interlayer is
neglected in the proposed model. Reissner [4] was the
first to develop large deflection equations for sandwich
plates where transverse shear deformations of the core
between thin plates was considered. In his formulation,
the plates were so thin compared to the core thickness
that variations in stress over the thickness of the plates
were assumed to be negligible. This formulation is not
useful for analysis of laminated glass units. Pister and
Dong [3] developed nonlinear equations similar to those
of von Karman assumptions that plane sections before
bending remain plane after bending. Although it has
been used by many [1,2,5,8,9], this theory ignores
shear deformations in materials within the system of
plates. Research on laminated glass units revealed that
the plates tend to slip with respect to each other, with
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the amount of slip depending on temperature.

2. Laminated Plate Equations for
Large Deflections

As the plates deflect, differences in displacements at
the top and bottom of the interlayer produce shear
strains and shear stresses in the interlayer material. The
shear stresses produce distributed forces and moments
along the middle planes at the two plates. The distrib-
uted forces in the x direction are —F, in the top plate
and +F, in the bottom plate, along with distributed
moments M, (equal 10 0.5¢) along the middle plane of
each plate as shown in Fig.1. Similar distributed forces
+F,, —F,and M, act in the y-direction.

Because distributed in-plane forces are present, the
von Karman equations have to be modified. These mod-
ifications can be done by inserting the new equilibrium
equations with distributed membrane forces
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Fig. 1. Laminated model considering forces imparted to plates
by shear deformed interlayer

Where S is defined such that
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These modifications satisfy Eq. (1) and Eq. (2). When
these changes are incorporated into the von Karman

equations for a given plate, we get

DV = p+t[N.w,, + 2N W, + Now,,]

= p+t(P,~SHw,, ~ 20, w,, — (D, + Siw,,]
N

and
V2¢+ (1 - .U)VAS = "E[Wxxwxy - (ny)Z] (8)

Note that N, N,, N,, shown in the above equations
are membrane Stresses only.
where b = E(Tm_v=ﬂexural rigidity of the plate; w=lat-
eral deflection; @=Airy stress function; p=lateral pres-
sure; f=plate thickness; £=Young’s modulus of elasti-
city; p=Poisson’s ratio; V‘=Biharmonic operator; Here
we assume that the two plates of the same thickness ¢
will have a common displacement w from the original
middle surface. With the distributed membrane forces
acting in opposite directions in the plates, it is clear that
the resulting membrane stresses in the plate are differ-
ent, or in other words, the Airy stress functions are dif-
ferent for the plates. Also, it is to be noted that the
lateral pressure p is shared differently by the two plates.

For plate 1, the equations are:

DViw = p' +1[(®), + S)w,. ~ 20w, + (D), + S)w,, ]
©

and
V@' + (1- VS = —Efw,w,, - (w,,)] (10)
For plate 2, the equations are :

DVw = p* + t[(@, + S)W,, = 2Bhw,, + (F, + S)w, ]
(1

and
V&' + (1 - V'S = ~E{wowy, - (w,,)’] 12

The superscripts 1 and 2 for p and @ represent quan-
tities corresponding to upper and lower plates 1 and 2
respectively. Combining Egs.(9),(11) and Eqs(10) (12)
respectively, we get:
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2DV'w = p + 24[ D, — w,, - 2D, W, + D.w,]  (13)

and

V'O = E[w,wy, - (w,)] (14)
where

D = d)l;(pz andp=p'+p2

Upon examination, it can be seen that the above
equations are the same as the layered plate equations,
but have to be solved for in-plane external loadings
such F,, F,, M, and M,, where :

M,=M, +M: (15)
M,=M,+M: (16)

The additional superscripts 1 and 2 on M represent
quantities corresponding to plate 1 and 2. Two minor
changes are needed to convert from a monolithic plate
1o a laminated unit of total thickness ¢, with equal indi-
vidual plate thickness of ¢* and of flexural rigidity D.
The, flexural rigidity D is changed from Et to

2
E¢)Y_ and ¢ is replaced by 2¢ . 1214
601 - )

3. Solution of Equations

Solution of von Karman equation employs the finite
difference method. Von Karman Egs. (13) and (14) can
be represented by two algebraic functions, using the two
central difference equations. Eq.(13) becomes:

[R{w} ={p}+Li(w, @) (17)
and ¢ Eq. (14) becomes
[SHP} = Ly(w) (18)

where [R] and [S] =Biharmonic operators
w =vector representing lateral displ-
acement
p =vector representing load
& =vector representing Airy function
L,, L, =nonlinear functions representing
part of right side of von Kar-
man’s equations.
It can be seen that Eq. (17) represents lateral deflec-
tion, while Eq. (18) represents the Airy stress function.

4. Iterative Procedure

Like any other iterative technique, new values for the
variables are calculated based on values obtained from
the previous iteration. Using values of w and @ from
the ith iteration the L, function can be calculated
numerically from the expression for L(w, ¢). The first
von Karman’s equation for the (i+1)h iteration
becomes

[RI{w;s1} ={P} + L(w, D) (19)

From this, w;,, can be determined. Now that w;,, is
known, it can be substituted into the right hand side of
the second von Karman equation such as that Eq. (18)
becomes

[SHDPiu1} = La(wisi) (20

and from this @,,; can be obtained. An error term is
used to end the iteration when convergence is reached
in the computation of w

n
Z Iwi+1,j_wi,j|

=1
5i+l = : < a(wmax)Hl

n

where

i =iteration number

J =node number

n =number of nodes in the grid
o= iterative tolerance number

The iterative procedure to be developed is given
below:
Step 1. Assume F,, F,, M,, M, equal to zero
Step 2. Calculate w and @
Step 3. Calculate @, and @,
Step 4. Calculate membrane and bending stresses in
both plates
Step 5. Calculate corresponding strains
Step 6. Calculate u and v at the top and bottom of the
interlayer
Step 7. Calculate N,, and N,, in the interlayer
Step 8. Calculate F,, F,, M, and M,
Step 9. Go back to Step 2., until satisfactory conver-
gence is reached for w and @
The method is applicable to different thickness of the
interlayer, since N,, and N,, in the interlayer are de-
pendent on its thickness.
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5. Numerical Implementation and Discussions

To illustrate the formulation of the method and its
efficiency the solution of a simply supported uniformly
loaded rectangular thin aluminium plate is presented.
Due to the symmetry of the problem only one quarter
of the plate is considered in the analysis, and it is mod-
elled by 10x 15 grid sizes. The dimensions and mate-
rial properties of the plate used are =60 cm, b=90 cm,
t=1.1cm, E = 75 GPa and u = 0.33. The plate is
subjected to a uniformly increasing static lateral pres-
sure up to 32Pa. For the purpose of comparing the
numerical results of the present method, a monolithic
plate with similar conditions is solved first. Fig. 2
shows the load-maximum deflection curve of the mono-
lithic plate for each of loads and corresponding number
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Fig. 2. Maximum deflections for loads and corresponding num-
ber of iterations
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Fig. 3. Lateral displacements due to p=4 kg/cm?

of iterations required. These results give close agree-
ment to the solution of SAP2000 for each of loads. The
variation of the bending stresses along the short axis in
the plate due to different lateral pressures is shown in
Fig. 3. This demonstrates the nonlinearity of the alu-
minium plate and the migration of the maximum
stresses from the center towards the support. A set of
computer generated displacement and maximum princi-
pal stress contours are also presented here in Figs. 4-6.
These figures show the nonlinearity of the displacement
patterns and the migration of the maximum principal
stresses from the center towards the corners of the
plate. For analysis and design of aluminum the values
of maximum principal stresses and their location are
valuable information.
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Fig. 4. Bending stresses along the short axis in the plate
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pressure.
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Fig. 6. Maximum principle tensile stresses due to p=14 kg/cm?

6. Conclusions

A mathematical model for the nonlinear stress analy-
sis of thin rectangular laminated aluminium plates is
developed. For the geometrically nonlinear, large deflec-
tion behavior of the aluminum plate, the classical von
Karman equations are used. These equations are solved
numerically by using the finite difference method. An
iterative technique is employed to solve these quasi-lin-
ear algebraic equations. The following conclusions are
advanced:

1) The results from the model developed agree well
with previous solutions.,

2) The model developed is very efficient in computer
storage requirements and execution time.

3) The iteration converged exactly to the von Karman
field equations.

4) Variable mesh size allows analysis of any size of
rectangular plate.

5) The solution obtained for any loading does not
depend on size or number of increments of load or on
previous displacements.
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