• 제목/요약/키워드: ion profile

검색결과 349건 처리시간 0.023초

이온 주입된 Mosfet의 문턱 전압의 해석적 모델 (Analytical Threshold Voltage Model of Ion-Implanted MOSFET)

  • 이효식;진주현;경종민
    • 대한전자공학회논문지
    • /
    • 제22권6호
    • /
    • pp.58-62
    • /
    • 1985
  • 이온 주입된 소형 MOSFET소자에 대한 해석적 문턱 전압 모델이 유도되었다. 일정한 도우핑 농도를 갖는 MOSFET에 적용되는 Yau 모델을 implanted channel구조와 bird's beat구조의 MOSFET에 대하여 적합한 형태로 수정하여 short channel 현상과 narrow width 현상을 정량적으로 설명하였다. Channel영역의 불순물 분포를 SUPREM 결과에서 2-step profile로 근사시켜 문턱 전압의 short channel model을 제안하였다. Weighting factor를 사용하여 bird's beat 영역의 불순물 분포를 고려함으로써 narrow width 현상을 성공적으로 설명하였다.

  • PDF

Studies of the $TiO_2-Si$ Interface Bombarded by $Ar^+$ Ion Beam

  • Zhang, J.;Huang, N.K.;Lu, T.C.;Zeng, L.;Din, T.;Chen, Y.K.
    • 한국진공학회지
    • /
    • 제12권S1호
    • /
    • pp.63-66
    • /
    • 2003
  • It is experimentally shown that a $TiO_2$ film on Si(111) substrate was prepared by using the technique of D.C. reaction sputter deposition with $Ar^{+}$ ion beam bombardment, and a layer-like structure was observed from the depth profile of the interface between $TiO_2$ film and Si substrate with Scanning Electron Microscopy and Electron Probe. It was also surprisingly discovered that Ti atoms could be detected at about 9 $\mu$m depth. The $TiO_2$-Si interface bombarded by $Ar^{+}$ ion beams revealed multi-layer structures, a mechanism might be caused by defect diffusion, impurity and matrix relocation. Multi-relocations of impurity and matrix atoms were as a result of profile broadening of the $TiO_2$-Si interface, and the spread due to matrix relocation in this system is shown to exceed much more the spread due to impurity relocation.

비정질 $Se_{75}Ge_{25}$ 박막의 $Ga^{+}$ 소스를 사용한 FIB 입사에 따른 이온농도 분포에 관한 연구 (A study on the ion-concentraion distribution using by FIB irradiated on amorphous $Se_{75}Ge_{25}$ Thin film)

  • 임기주;정홍배;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제13권3호
    • /
    • pp.193-199
    • /
    • 2000
  • As an energetic focused-ion beam(FIB) is irradiated on an inorganic amorphous thin film a majority of ions without a reflection at surface, is randomly collided with constituent atoms in thin film. but their distribution exhibits generally a systematic form of distribution. In our previous paper we reported the concentration distribution and the transmission per unit depth of Ga$^{+}$ ions penetrated int a-Se$_{75}$ /Ge$_{25}$ thin film using the LSS-based calculation. In this paper these simulated results are compared with those obtained by a conventional profile code(ISC) and a practical SIMS profile. Then the results of LSS-based calculation have only a small difference with those of code and SIMS Especially. in the case of Ga$^{+}$-FIB with an accelerating energy of 15keV. the depth of the maximum ion concentration is coincident with each other in an error range of $\pm$5$\AA$.EX>.

  • PDF

보로실리케이트 유리의 이온교환에 의한 고강도 투명방탄소재의 제조 (Fabrication of High Strength Transparent Bulletproof Materials by Ion Exchanged Borosilicate Glass)

  • 김영환;심규인;임재민;최세영
    • 한국군사과학기술학회지
    • /
    • 제13권6호
    • /
    • pp.1121-1126
    • /
    • 2010
  • Borosilicate glass (81% $SiO_2$-2% $Al_2O_3$-13% $B_2O_3$-4% $Na_2O_3$) was prepared, and the glass was ion exchanged in $KNO_3$ powder containing different temperature and time. The $K^+-Na^+$ ion exchange takes place at the glass surface and creates compressed stress, which raise the mechanical strength of the glass. The depth profile of $Na^+$ and $K^+$ was observed by electron probe micro analyzer. With the increasing heat-treatment time from 0min to 20min, the depth profile was increased from 17.1um to 29.4um, but mechanical properties were decreased. It was also found out that excessive heat treatment brings stress relaxation. The Vickers hardness, Fracture Toughness and bending strength of ion exchanged samples at $570^{\circ}C$ for 10min were $821.8H_v$, $1.3404MPa{\cdot}m^{1/2}$, and 953MPa, which is about 120%, 180%, and 450% higher than parent borosilicate glass, respectively. Transmittance was analyzed by UV-VIS-NIR spectrophotometer. Transmittance of ion exchanged borosilicate glass was decreased slightly at visible-range. It can be expected that transparent bulletproof materials in more light-weight and thinner by ion exchanged borosilicate glass.

질소이온주입에 의한 알루미늄의 표면개질특성 (Surface Modification of Aluminum by Nitrogen ion Implantation)

  • 강혁진;안성훈;이재상;이재형;김경균
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.124-130
    • /
    • 2005
  • The research on surface modification technology has been advanced to improve the properties of engineering materials. ion implantation is a novel surface modification technology to enhance the mechanical, chemical and electrical properties of substrate's surface using accelerated ions. In this research, nitrogen ions were implanted into aluminum substrates which would be used for mold of rubber materials. The composition of nitrogen ion implanted aluminum alloy and nitrogen ion distribution profile were analyzed by Auger Electron Spectroscopy (AES). To analyze the modified surface, properties such as hardness, friction coefficient, wear resistance, contact angle, and surface roughness were measured. Hardness of ion implanted specimens was higher than that of untreated specimens. Friction coefficient was reduced, and wear resistance was improved. From the experimental results, it can be expected that ion implantation of nitrogen enhances the surface properties of aluminum mold.

CHARACTERIXATION OF PLASMA ION IMPLANTED SURFACES USING TIME-OF-FLIGHT SECONDARY ION MASS SPECTROMATRY

  • Lee, Yeon-Hee;Han, Seung-Hee;Lee, Jung-Hye;Yoon, Jung-Hyeon
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.880-883
    • /
    • 1996
  • Plasma Source Ion Implantation (PSII) technique was used for the hydrophilization or hydrophobization of polymer surfaces. Polymers were modified with different plasma gases such as oxygen, nitrogen, argon, and tetrafluoromethane, and for varying lengths of treatment time. Plasma ion treatment of oxygen, nitrogen, argon and their mixtures increased significantly the hydrophilic properties of polymer surfaces. More hydrophobic surfaces of polymers were formed after the treatment with tetrafluoromethane. A study of plasma source ion implanted polymers was performed using contact angle measurements and Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). The TOF-SIMS spectra and depth profile were used to obtain the information about the treated surfaces of polymers. The permanence of this technique could be evaluated with respect to ageing time. The surfaces treated with PSII gave better stability than other surface modification methods.

  • PDF

이온 주입한 MOSFET에 대한 Threshold 전압의 모데링 (Threshold Voltage Modeling of Ion-Implanted MOSFET's)

  • 류종선;김여환;김보우
    • 대한전자공학회논문지
    • /
    • 제22권1호
    • /
    • pp.22-27
    • /
    • 1985
  • 본 논문에서는 채널에 붕소를 이온주입하여 불균일한 도우핑 profile을 가지는 n-채럴 MOSFET의 threshold 전압에 대하여 보다 간단한 모델링을 기술하였다. 실제의 도우핑 Profile들 지수적인 Profile을 지수적인 profile로 근이시키고 Poisson방정식과 depletion approximation을 이용하여 실리콘 표면의 Potential, 최대 공핍층의 폭 그리고 threshold 전압을 구하였다. 계산한 threshold 전압이 실험치와 잘 일치한다는 사실은 이온 주입한 MOS소자들에 대하여 지수적인 도우핑 Profile로 근이시킬 수 있다는 타당성을 보여 주고 있다.

  • PDF

A Study on the Fluorine Effect of Direct Contact Process in High-Doped Boron Phosphorus Silicate Glass (BPSG)

  • Kim, Hyung-Joon;Choi, Pyungho;Kim, Kwangsoo;Choi, Byoungdeog
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권6호
    • /
    • pp.662-667
    • /
    • 2013
  • The effect of fluorine ions, which can be reacted with boron in high-doped BPSG, is investigated on the contact sidewall wiggling profile in semiconductor process. In the semiconductor device, there are many contacts on $p^+/n^+$ source and drain region. However these types of wiggling profile is only observed at the $n^+$ contact region. As a result, we find that the type of plug implantation dopant can affect the sidewall wiggling profile of contact. By optimizing the proper fluorine gas flow rate, both the straight sidewall profile and the desired electrical characteristics can be obtained. In this paper, we propose a fundamental approach to improve the contact sidewall wiggling profile phenomena, which mostly appear in high-doped BPSG on next-generation DRAM products.

범용성 유도결합 플라즈마 식각장비를 이용한 깊은 실리콘 식각 (The Development of Deep Silicon Etch Process with Conventional Inductively Coupled Plasma (ICP) Etcher)

  • 조수범;박세근;오범환
    • 한국전기전자재료학회논문지
    • /
    • 제17권7호
    • /
    • pp.701-707
    • /
    • 2004
  • High aspect ratio silicon structure through deep silicon etching process have become indispensable for advanced MEMS applications. In this paper, we present the results of modified Bosch process to obtain anisotropic silicon structure with conventional Inductively Coupled Plasma (ICP) etcher instead of the expensive Bosch process systems. In modified Bosch process, etching step ($SFsub6$) / sidewall passivation ($Csub4Fsub8$) step time is much longer than commercialized Bosch scheme and process transition time is introduced between process steps to improve gas switching and RF power delivery efficiency. To optimize process parameters, etching ($SFsub6$) / sidewall passivation ($Csub4Fsub8$) time and ion energy effects on etching profile was investigated. Etch profile strongly depends on the period of etch / passivation and ion energy. Furthermore, substrate temperature during etching process was found to be an important parameter determining etching profile. Test structures with different pattern size have been etched for the comparison of the aspect ratio dependent etch rate and the formation of silicon grass. At optimized process condition, micropatterns etched with modified Bosch process showed nearly vertical sidewall and no silicon grass formation with etch rate of 1.2 ${\mu}{\textrm}{m}$/ min and the size of scallop of 250 nm.

이온 교환 채널 유리 도파로의 도파광 분포특성 (The guided field distribution characteristics in the ion-exchange channel glass waveguide)

  • 박정일;박태성;천석표;정홍배
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권3호
    • /
    • pp.332-339
    • /
    • 1995
  • In this paper, it was investigated the guided field intensity distribution of the channel in the silver & potassium ion-exchange glass-waveguide. The guided field intensity distribution analysis of ion-exchange glass-waveguide was based on the combination of the WKB dispersion relationship method with a Gaussian distribution function of refractive index profile and the Field Shadow method to the modeling of the channel waveguide. As the results of the channel waveguide modeling, it was represented 2-dimensional and 3-dimensional field distribution of ion-exchange glass waveguide.

  • PDF