• Title/Summary/Keyword: invariant theory

Search Result 154, Processing Time 0.021 seconds

CONFORMAL CHANGES OF A RIZZA MANIFOLD WITH A GENERALIZED FINSLER STRUCTURE

  • Park, Hong-Suh;Lee, Il-Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.327-340
    • /
    • 2003
  • We are devoted to dealing with the conformal theory of a Rizza manifold with a generalized Finsler metric $G_{ij}$ (x,y) and a new conformal invariant non-linear connection $M^{i}$ $_{j}$ (x,y) constructed from the generalized Cern's non-linear connection $N^{i}$ $_{j}$ (x,y) and almost complex structure $f^{i}$ $_{j}$ (x). First, we find a conformal invariant connection ( $M_{j}$ $^{i}$ $_{k}$ , $M^{i}$ $_{j}$ , $C_{j}$ $^{i}$ $_{k}$ ) and conformal invariant tensors. Next, the nearly Kaehlerian (G, M)-structures under conformal change in a Rizza manifold are investigate.

INVARIANT DIFFERENTIAL OPERATORS ON THE MINKOWSKI-EUCLID SPACE

  • Yang, Jae-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.275-306
    • /
    • 2013
  • For two positive integers $m$ and $n$, let $\mathcal{P}_n$ be the open convex cone in $\mathbb{R}^{n(n+1)/2}$ consisting of positive definite $n{\times}n$ real symmetric matrices and let $\mathbb{R}^{(m,n)}$ be the set of all $m{\times}n$ real matrices. In this paper, we investigate differential operators on the non-reductive homogeneous space $\mathcal{P}_n{\times}\mathbb{R}^{(m,n)}$ that are invariant under the natural action of the semidirect product group $GL(n,\mathbb{R}){\times}\mathbb{R}^{(m,n)}$ on the Minkowski-Euclid space $\mathcal{P}_n{\times}\mathbb{R}^{(m,n)}$. These invariant differential operators play an important role in the theory of automorphic forms on $GL(n,\mathbb{R}){\times}\mathbb{R}^{(m,n)}$ generalizing that of automorphic forms on $GL(n,\mathbb{R})$.

Broadband Interference Patterns in Shallow Water with Constant Bottom Slope (해저면 경사가 일정한 천해에서의 광대역 간섭 유형)

  • 오철민;오선택;나정열;이성욱
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.485-493
    • /
    • 2002
  • Broadband interference patterns are studied using ship as an acoustic source in shallow waters with varying bathymetry. Waveguide invariant index (β) indicating the pattern of constructive (or destructive) interference in range-frequency domain is derived in a waveguide with constant bottom slope based on adiabatic mode theory. Using this invariant, changes of the interference patterns resulting from the variation of bottom bathymetry are analyzed. Results of the analytic interpretation is compared with those from sea experiments and numerical simulations.

CAUCHY DECOMPOSITION FORMULAS FOR SCHUR MODULES

  • Ko, Hyoung J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.41-55
    • /
    • 1992
  • The characteristic free representation theory of the general linear group is one of the powerful tools in the study of invariant theory, algebraic geometry, and commutative algebra. Recently the study of such representations became a popular theme. In this paper we study the representation-theoretic structures of the symmetric algebra and the exterior algebra over a commutative ring with unity 1.

  • PDF

Topological Properties of Recursive Circulants : Disjoint Cycles and Graph Invariants (재귀원형군의 위상 특성 : 서로소인 사이클과 그래프 invariant)

  • Park, Jeong-Heum;Jwa, Gyeong-Ryong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.8
    • /
    • pp.999-1007
    • /
    • 1999
  • 이 논문은 재귀원형군 G(2^m , 2^k )를 그래프 이론적 관점에서 고찰하고 정점이 서로소인 사이클과 그래프 invariant에 관한 위상 특성을 제시한다. 재귀원형군은 1 에서 제안된 다중 컴퓨터의 연결망 구조이다. 재귀원형군 {{{{G(2^m , 2^k )가 길이 사이클을 가질 필요 충분 조건을 구하고, 이 조건하에서 G(2^m , 2^k )는 가능한 최대 개수의 정점이 서로소이고 길이가l`인 사이클을 가짐을 보인다. 그리고 정점 및 에지 채색, 최대 클릭, 독립 집합 및 정점 커버에 대한 그래프 invariant를 분석한다.Abstract In this paper, we investigate recursive circulant G(2^m , 2^k ) from the graph theory point of view and present topological properties of G(2^m , 2^k ) concerned with vertex-disjoint cycles and graph invariants. Recursive circulant is an interconnection structure for multicomputer networks proposed in 1 . A necessary and sufficient condition for recursive circulant {{{{G(2^m , 2^k ) to have a cycle of lengthl` is derived. Under the condition, we show that G(2^m , 2^k ) has the maximum possible number of vertex-disjoint cycles of length l`. We analyze graph invariants on vertex and edge coloring, maximum clique, independent set and vertex cover.

THE MEASURE OF THE UNIFORMLY HYPERBOLIC INVARIANT SET OF EXACT SEPARATRIX MAP

  • Kim, Gwang-Il;Chi, Dong-Pyo
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.779-788
    • /
    • 1997
  • In this work, using the exact separatrix map which provides an efficient way to describe dynamics near the separatrix, we study the stochastic layer near the separatrix of a one-degree-of-freedom Hamilitonian system with time periodic perturbation. Applying the twist map theory to the exact separatrix map, T. Ahn, G. I. Kim and S. Kim proved the existence of the uniformly hyperbolic invariant set(UHIS) near separatrix. Using the theorems of Bowen and Franks, we prove this UHIS has measure zero.

  • PDF

Decentralized Output-feedback Stabilization of Linear Time-invariant Interconnected Systems with Delays

  • Shim, Duk-Sun
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.158-162
    • /
    • 1998
  • We study the decentralized stabilization problem of linear time-invariant large-scale interconnected systems with delays without any system structure. We obtain sufficient stability conditions for interconnected systems which are equivalent to disturbance attenuation of some scaled system. A decentralized output-feedback controller is obtained using standard H$\infty$ control theory. The obtained controller is delay-independent. We also obtain an observer for the interconnected system.

  • PDF

INVARIANCE OF KNEADING MATRIX UNDER CONJUGACY

  • Gopalakrishna, Chaitanya;Veerapazham, Murugan
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.265-281
    • /
    • 2021
  • In the kneading theory developed by Milnor and Thurston, it is proved that the kneading matrix and the kneading determinant associated with a continuous piecewise monotone map are invariant under orientation-preserving conjugacy. This paper considers the problem for orientation-reversing conjugacy and proves that the former is not an invariant while the latter is. It also presents applications of the result towards the computational complexity of kneading matrices and the classification of maps up to topological conjugacy.

Broadening of Foci in an Ocean Time Reversal Processing and Application to Underwater Acoustic Communicaion

  • Shin, Kee-Cheol;Kim, Jea-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3E
    • /
    • pp.104-111
    • /
    • 2008
  • Recently, a method for robust time reversal focusing has been introduced to extend the period of stable focusing in time-dependent ocean environments [S. Kim et al., J. Acoust. Soc. Am. 114, 145-157, (2003)]. In this study, concept of focal-size broadening based on waveguide invariant theory in an ocean time reversal acoustics is described. It is achieved by imposing the multiple location constraints. The signal vector used in multiple location constraints are found from the theory on waveguide invariant for frequency band corresponding the extended focal range. The broadening of foci in an ocean waveguide can play an important role in the application of time reversal processing, particularly to the underwater acoustic communication with moving vehicles. The proposed method is demonstrated in the context of the underwater acoustic communication from the transmit/receive array (TRA) to a slowly moving vehicle.

ON THE THEORY OF LORENTZ SURFACES WITH PARALLEL NORMALIZED MEAN CURVATURE VECTOR FIELD IN PSEUDO-EUCLIDEAN 4-SPACE

  • Aleksieva, Yana;Ganchev, Georgi;Milousheva, Velichka
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1077-1100
    • /
    • 2016
  • We develop an invariant local theory of Lorentz surfaces in pseudo-Euclidean 4-space by use of a linear map of Weingarten type. We find a geometrically determined moving frame field at each point of the surface and obtain a system of geometric functions. We prove a fundamental existence and uniqueness theorem in terms of these functions. On any Lorentz surface with parallel normalized mean curvature vector field we introduce special geometric (canonical) parameters and prove that any such surface is determined up to a rigid motion by three invariant functions satisfying three natural partial differential equations. In this way we minimize the number of functions and the number of partial differential equations determining the surface, which solves the Lund-Regge problem for this class of surfaces.