• Title/Summary/Keyword: intuitionistic fuzzy semigroup

Search Result 18, Processing Time 0.019 seconds

INTUITIONISTIC FUZZY IDEALS AND BI-IDEALS

  • HUR, KUL;KIM, KWANG JIN;SONG, HYEONG KEE
    • Honam Mathematical Journal
    • /
    • v.26 no.3
    • /
    • pp.309-330
    • /
    • 2004
  • In this paper, we apply the concept of intuitionistic fuzzy sets to theory of semigroups. We give some properties of intuitionistic fuzzy ideals and intuitionistic fuzzy bi-ideals, and characterize which is left [right] simple, left [right] duo and a semilattice of left [right] simple semigroups or another type of semigroups in terms of intuitionistic fuzzy ideals and intuitionistic fuzzy bi-ideals.

  • PDF

INTUITIONISTIC FUZZY IDEALS IN ORDERED SEMIGROUPS

  • Khan, Asghar;Khan, Madad;Hussain, Saqib
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.311-324
    • /
    • 2010
  • We prove that a regular ordered semigroup S is left simple if and only if every intuitionistic fuzzy left ideal of S is a constant function. We also show that an ordered semigroup S is left (resp. right) regular if and only if for every intuitionistic fuzzy left(resp. right) ideal A = <$\mu_A$, $\gamma_A$> of S we have $\mu_A(a)\;=\;\mu_A(a^2)$, $\gamma_A(a)\;=\;\gamma_A(a^2)$ for every $a\;{\in}\;S$. Further, we characterize some semilattices of ordered semigroups in terms of intuitionistic fuzzy left(resp. right) ideals. In this respect, we prove that an ordered semigroup S is a semilattice of left (resp. right) simple semigroups if and only if for every intuitionistic fuzzy left (resp. right) ideal A = <$\mu_A$, $\gamma_A$> of S we have $\mu_A(a)\;=\;\mu_A(a^2)$, $\gamma_A(a)\;=\;\gamma_A(a^2)$ and $\mu_A(ab)\;=\;\mu_A(ba)$, $\gamma_A(ab)\;=\;\gamma_A(ba)$ for all a, $b\;{\in}\;S$.

Fuzzy ideal graphs of a semigroup

  • Rao, Marapureddy Murali Krishna
    • Annals of Fuzzy Mathematics and Informatics
    • /
    • v.16 no.3
    • /
    • pp.363-371
    • /
    • 2018
  • The main objective of this paper is to connect fuzzy theory, graph theory and fuzzy graph theory with algebraic structure. We introduce the notion of fuzzy graph of semigroup, the notion of fuzzy ideal graph of semigroup as a generalization of fuzzy ideal of semigroup, intuitionistic fuzzy ideal of semigroup, fuzzy graph and graph, the notion of isomorphism of fuzzy graphs of semigroups and regular fuzzy graph of semigroup and we study some of their properties.

INTUITIONISTIC FUZZY INTERIOR IDEALS IN ORDERED SEMIGROUPS

  • Shabir, Muhammad;Khan, A.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1447-1457
    • /
    • 2009
  • In this paper we define intuitionistic fuzzy interior ideals in ordered semigroups. We prove that in regular(resp. intra-regular and semisimple) ordered semigroups the concepts of intuitionistic fuzzy interior ideals and intuitionistic fuzzy ideals coincide. We prove that an ordered semi group is intuitionistic fuzzy simple if and only if every intutionistic fuzzy interior ideal is a constant function. We characterize intra-regular ordered semi groups in terms of interior (resp. intuitionistic fuzzy interior) ideals.

  • PDF

INTUITIONISTIC FUZZY (1, 2)-IDEALS OF SEMIGROUPS

  • JUN, YOUNG BAE;ROH, EUN HWAN;SONG, SEOK ZUN
    • Honam Mathematical Journal
    • /
    • v.27 no.3
    • /
    • pp.353-367
    • /
    • 2005
  • Some properties of the intuitionistic fuzzy (1, 2)-ideal is considered. Characterizations of an intuitionistic fuzzy (1, 2)-ideal are given. We show that every intuitionistic fuzzy (1, 2)-ideal in a group is constant. Using a chain of (1, 2)-ideals of a semigroup S, an intuitionistic fuzzy (1, 2)-ideal of S is established.

  • PDF

INTUITIONISTIC FUZZY FINITE SWITCHBOARD STATE MACHINES

  • Jun, Young-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.315-325
    • /
    • 2006
  • The notion of intuitionistic fuzzy finite switchboard state machines and (strong) homomorphisms of intuitionistic fuzzy finite state machines are introduced, and related properties are investigated. After we give a congruence relation on the set of all words of elements of X of finite length, the quotient structure is discussed. We show that the family of equivalence classes is a finite semigroup with identity.

ON INTUITIONISTIC FUZZY PRIME ${\Gamma}$-IDEALS OF ${\Gamma}$-LA-SEMIGROUPS

  • Abdullah, Saleem;Aslam, Muhammad
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.603-612
    • /
    • 2012
  • In this paper, we introduce and study the intuitionistic fuzzy prime (semi-prime) ${\Gamma}$-ideals of ${\Gamma}$-LA-semigroups and some interesting properties are investigated. The main result of the paper is: if $A={\langle}{\mu}_A,{\gamma}_A{\rangle}$ is an IFS in ${\Gamma}$-LA-semigroup S, then $A={\langle}{\mu}_A,{\gamma}_A{\rangle}$ is an intuitionistic fuzzy prime (semi-prime) ${\Gamma}$-ideal of S if and only if for any $s,t{\in}[0,1]$, the sets $U({\mu}_A,s)=\{x{\in}S:{\mu}_A(x){\geq}s\}$ and $L({\gamma}_A,t)=\{x{\in}S:{\gamma}_A(x){\leq}t\}$ are prime (semi-prime) ${\Gamma}$-ideals of S.