• Title/Summary/Keyword: inter-level dielectric(ILD)

Search Result 16, Processing Time 0.019 seconds

Characteristic of Addition Oxidizer on the $WO_3$ Thin Film CMP (산화제 첨가에 따른 $WO_3$ 박막의 CMP 특성)

  • Lee, Woo-Sun;Ko, Pi-Ju;Choi, Kwon-Woo;Kim, Tae-Wan;Choi, Chang-Joo;Oh, Geum-Koh;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.313-316
    • /
    • 2004
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of in the defect-free inter-level dielectrics(ILD). we investigated the performance of $WO_3$ CMP used silica slurry, ceria slurry, tungsten slurry In this paper, the effects of addition oxidizer on the $WO_3$ CMP characteristics were investigated to obtain the higher removal rate and lower non-uniformity.

  • PDF

Global planarization Characteristic of $WO_3$ CMP ($WO_3$ CMP의 광역평탄화 특성)

  • Lee, Woo-Sun;Ko, Pi-Ju;Choi, Kwon-Woo;Lee, Young-Sik;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.188-191
    • /
    • 2003
  • Chemical mechanical polishing (CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of in the defect-free inter-level dielectrics (ILD). we investigated the performance of $WO_3$ CMP used silica slurry, ceria slurry, tungsten slurry. In this paper, the effects of addition oxidizer on the $WO_3$ CMP characteristics were investigated to obtain the higher removal rate and lower non-uniformity.

  • PDF

Numerical Study on Polishing Behavior During Oxide CMP (Oxide CMP과정에 대한 수치 운동 해석)

  • Kwon Daljung;Kim Inhwan;Lee Dohyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.435-440
    • /
    • 2005
  • In this paper, slurry fluid motion, abrasive particle motion, and roles of groove patterns on the pads are numerically investigated in the 2D and 3D geometries. The simulation results are analyzed in terms of experimental removal rate and WIWNU (Within Wafer Non-Uniformity) for ILD (Inter Level Dielectric) CMP process. Numerical investigations reveal that the grooves in the pad behave as uniform distributor of abrasive particles and enhance the removal rate by increasing shear stress. Higher removal rate and desirable uniformity are numerically and experimentally observed at the pad with grooves. Numerical analysis is very well matched with experimental results and helpful fur understanding polishing mechanism and local physics.

Stress Dependence of Thermal Stability of Nickel Silicide for Nano MOSFETs

  • Zhang, Ying-Ying;Lee, Won-Jae;Zhong, Zhun;Li, Shi-Guang;Jung, Soon-Yen;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok;Lim, Sung-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.110-114
    • /
    • 2007
  • Dependence of the thermal stability of nickel silicide on the film stress of inter layer dielectric (ILD) layer has been investigated in this study and silicon nitride $(Si_3N_4)$ layer is used as an ILD layer. Nickel silicide was formed with a one-step rapid thermal process at $500^{\circ}C$ for 30 sec. $2000{\AA}$ thick $Si_3N_4$ layer was deposited using plasma enhanced chemical vapor deposition after the formation of Ni silicide and its stress was split from compressive stress to tensile stress by controlling the power of power sources. Stress level of each stress type was also split for thorough analysis. It is found that the thermal stability of nickel silicide strongly depends on the stress type as well as the stress level induced by the $Si_3N_4$ layer. In the case of high compressive stress, silicide agglomeration and its phase transformation from the low-resistivity nickel mono-silicide to the high-resistivity nickel di-silicide are retarded, and hence the thermal stability is obviously improved a lot. However, in the case of high tensile stress, the thermal stability shows the worst case among the stressed cases.

Characteristic of Oxide CMP with the Various Temperatures of Silica Slurry (실리카 슬러리의 온도 변화에 따른 산화막의 CMP 특성)

  • Ko, Pil-Ju;Park, Sung-Woo;Kim, Nam-Hoon;Seo, Yong-Jin;Chang, Eui-Goo;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.707-710
    • /
    • 2004
  • Chemical mechanical polishing (CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of in the defect-free inter-level dielectrics (ILD). In this paper, we have investigated slurry properties and CMP performance of silicon dioxide (oxide) as a function of different temperature of slurry. Thermal effects on the silica slurry properties such as pH, particle size, conductivity and zeta potential were studied. Moreover, the relationship between the removal rate (RR) with WIWNU and slurry properties caused by changes of temperature were investigated. Therefore, the understanding of these temperature effects provides a foundation to optimize an oxide CMP Process for ULSI multi-level interconnection technology.

  • PDF

A Study on the Extraction of Parasitic Capacitance for Multiple-level Interconnect Structures (다층배선 인터커넥트 구조의 기생 캐패시턴스 추출 연구)

  • 윤석인;원태영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.44-53
    • /
    • 1999
  • This paper are reported a methodology and application for extracting parasitic capacitances in a multi-level interconnect semiconductor structure by a numerical technique. To calculate the parasitic capacitances between the interconnect lines, we employed finite element method (FEM) and calculated the distrubution of electric potential in the inter-metal layer dielecric(ILD) by solving the Laplace equation. The three-dimensional multi-level interconnect structure is generated directly from two-dimensional mask layout data by specifying process sequences and dimension. An exemplary structure comprising two metal lines with a dimension of 8.0$\times$8.0$\times$5.0$\mu\textrm{m}^3/TEX>, which is embedded in three dielectric layer, was simulated to extract the parasitic capacitances. In this calculation, 1960 nodes with 8892 tetrahedra were used in ULTRA SPARC 1 workstation. The total CPU time for the simulation was 28 seconds, while the memory size of 4.4MB was required.

  • PDF