• Title/Summary/Keyword: intensity of rainfall

Search Result 759, Processing Time 0.036 seconds

Characterization of Debris Flow at Various Topographical Division Sizes (지형분할 격자크기에 따른 토석류 흐름 특성)

  • Jin, Hyunwoo;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.3
    • /
    • pp.49-55
    • /
    • 2015
  • The rainfall pattern, rainfall intensity as well as topographical conditions used for the analysis of debris flow affect, in general, the magnitude of debris flow and flow velocity, when debris flow occurs. The consideration of topographical conditions implies that the topography is equally divided into grids and the slope of inside the grid is computed as an average, leading to, in turn, obtain the closer results to the reality as the grid is smaller in the case of the severely bended topography. Although the size of grid should be as small as possible so as for more accurate analysis of debris flow, the analysis of debris flow has been so far conducted by using sparsely divided grids due to the limitation of analysis algorithm, computational ability and running time. So, it is necessary to suggest an appropriate grid size for the practical approaches. Therefore, this study presents the evaluation of the effect of the size of a grid on the debris flow besides the factors which referred to the previous studies such as accumulated rainfall, rainfall intensity and rainfall duration time. From this, it enables to suggest a rational and practical grid size for topography to be divided.

The Distribution of Natural Disaster in Mountainous Region of Gangwon-do (강원도 산지지역의 자연재해 분포 특성)

  • Lee, Seung-Ho;Lee, Kyoung-Mi
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.843-857
    • /
    • 2008
  • This study analyzed distribution of natural disaster and trend of related climatic elements in mountainous region of Gangwon-do. In mountainous region of Gangwon-do, there have been 27 natural disasters of which heavy rainfall have the leading cause for the last 5 years(16 times in 2003-2007). It has been 9 natural disasters in Jinbu-myeon Pyeongchang-gun, the most frequent area. The mountainous region has been larger natural damage than its surrounding regions and there has been more damage at higher altitudes. While the heavy rainfall have caused damage over the northwest of mountains, most typhoons have damaged southern part of mountains. Most mountainous region suffers from strong wind but damage by snow is small. In mountainous region of Gangwon-do, annual precipitation, intensity of precipitation and heavy rainfall days have been increasing since 2000 and this tendency is significant in its intensity. However, annual snowfall, snowfall days and heavy snowfall days have been clearly decreasing since 2000. In case heavy rainfall accompanies strong wind, the damages are larger in mountainous region of Gangwon-do. Therefore it is important to be prepared for heavy rainfall and strong wind.

Rainfall Intensity-Duration Thresholds for the Initiation of a Shallow Landslide in South Korea (우리나라에 있어서 산사태 유발강우의 강도-지속시간 한계)

  • Kim, Suk-Woo;Chun, Kun-Woo;Kim, Min-Seok;Kim, Min-Sik;Kim, Jin-Hak;Lee, Dong-Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.463-466
    • /
    • 2013
  • We examined relationship between rainfall and triggering of shallow landslides in South Korea, based on hourly rainfall data for 478 shallow landslides during 1963-2012. Rainfall intensity(I) and duration(D) relationship was analyzed to obtain the I-D threshold for the initiation of a shallow landslide using the quantile regression analysis. The I-D threshold equation from in this study is: $I=9.64D^{-0.27}$($4{\leq}D{\leq}76$), where I and D are expressed in millimeters per hour and hours, respectively. In addition, rainfall criteria were proposed to predict the potential to cause landslides, based on values of I-D and cumulative rainfall derived from quantile regression analysis. Our findings may provide essential data and important evidences for the improvement of landslide warning and evacuation system.

Prediction and Analysis of Debris Flow with Hydraulic Method (수리학적 방법에 의한 토석류의 발생 예측 및 산정)

  • Lee, Soon-Tak;Muneo, Hirano;Park, Ki-Ho
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.147-154
    • /
    • 1994
  • The occurrence condition of debris fiow due to rainfall is given by solving the equations for fiow on a slope. The solution shows that a debris fiow will occur on a slope when the accumulated rainfall within the time of concentration exceeds a certain value determined by the properties of the slope. To estimate this critical value, the system analysis technique would be commendable. In this study, a procedure to fine the critical rainfall from the rainfall data whith and without debris flows is proposed. Reliability of this method is verified by applying to the debris flows in Unzen Volcano which recently began to erupt. Discharge of debris flow in a stream is obtained by solving the equation of continuity using the kinematic wave theory and assuming the cross sectional area to be a function of discharge. The computed hydrographs agree weel with the ones observed at the rivers in Sakurajima and Unzen Volcanos. It is found from the derived equation that the runoff intensity of debris flow is in proportion to the rainfall intensity and accumulated rainfall, jointly. This gives a theoretical basis to the conventional method which has been widely used.

  • PDF

Analysis of Extreme Rainfall Distribution Scenarios over the Landslide High Risk Zones in Urban Areas (도심지 토사재해 고위험지역 극치강우 시간분포 시나리오 분석)

  • Yoon, Sunkwon;Jang, Sangmin;Rhee, Jinyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.57-69
    • /
    • 2016
  • In this study, we analyzed the extreme rainfall distribution scenarios based on probable rainfall calculation and applying various time distribution models over the landslide high risk zones in urban areas. We used observed rainfall data form total 71 ASOS (Automated Synoptic Observing System) station and AWS (Automatic Weather Station) in KMA (Korea Meteorological Administration), and we analyzed the linear trends for 1-hr and 24-hr annual maximum rainfall series using simple linear regression method, which are identified their increasing trends with slopes of 0.035 and 0.660 during 1961-2014, respectively. The Gumbel distribution was applied to obtain the return period and probability precipitation for each duration. The IDF (Intensity-Duration-Frequency) curves for landslide high risk zones were derived by applying integrated probability precipitation intensity equation. Results from IDF analysis indicate that the probability precipitation varies from 31.4~38.3 % for 1 hr duration, and 33.0~47.9 % for 24 hr duration. It also showed different results for each area. The $Huff-4^{th}$ Quartile method as well as Mononobe distribution were selected as the rainfall distribution scenarios of landslide high risk zones. The results of this study can be used to provide boundary conditions for slope collapse analysis, to analyze sediment disaster risk, and to use as input data for risk prediction of debris flow.

Reduction Efficiency of the Stormwater Wetland from Animal Feeding-Lot (강우유출수 처리목적 인공습지의 강우시 오염물질 저감특성에 관한 연구)

  • Park, Kisoo;Niu, Siping;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.79-90
    • /
    • 2013
  • Stormwater wetland targeted to treat the rainfall runoff from cow feeding-lot basin has been monitored from May 2010 to November 2011. Reduction efficiency estimated based on 20 rainfall event monitoring was 88%, 54%, 70%, 31%, and 64% for TSS, BOD, $COD_{Cr}$, TN, and TP, respectively. Theoretically, as rainfall depth increases, hydraulic exchange ratio has to be increased. When the exchange ratio approaches to 1 (usually design goal), TSS reduction efficiency was estimated about 55%. Uncertainty in reduction efficiency of the stormwater wetland is normally very high due to the continuous rainfall activity, its magnitude and intensity, antecedent dry days, and other natural variables which can not be controlled by experiment conductors. In this study, predominant affecting variables was found to be hydraulics caused by consecutive rainfall events having different intensity and algal growth during dry days.

A Case Study of Landslides due to Heavy Rainfall (집중호우시 산사태 원인분석에 관한 사례연구)

  • Yoo, Nam-Jae;Park, Byung-Soo
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.303-315
    • /
    • 2001
  • This study is a research result of investigating causes of landslides occurred at Uijongbu in Kyonggi Province, Korea. For works of this research, informations and data about landslides occurred at the site, geological and topographical informations were collected to analyze causes of landslides, and mapping landslides was performed by using results of field investigation. Data about rainfall during occurrence of landslides around Uijongbu was also used to find the effect of intense rainfall on occurrence of landslides. Based on informations obtained from field investigation and collected data, the scale and the pattern of landslides were analyzed and influencing factors on landslide such as intensity and duration of rainfall, topography, geologic condition, geotechnical engineering properties of ground, forestry were investigated statistically to find causes of landslides. On the other hands, for geotechnical engineering respects, slope stability analysis was performed for the typical sites chosen from the sites where the landslides occurred, using informations obtained from detailed topographical survey with total stations, field reconnaissance and results from laboratory tests.

  • PDF

Scavenging Properties of Atmospheric Carbon by Precipitation

  • Hwang, Kyung-Chul;Ma, Chang-Jin;Cho, Ki-Chul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E2
    • /
    • pp.77-85
    • /
    • 2004
  • In order to investigate the scavenging property of airborne carbonaceous particles by precipitations, rainwater, snow sample, and total suspended particulate matter (TSP) were collected at a heavily industrialized urban site. Elemental carbon (EC) contents of both rainwater and snow water were deter-mined using elemental analysis system. EC concentrations in rain samples varied from 33.6 to 166.6 $\mu\textrm{g}$ L$^{-1}$ with an average 47.2 $\mu\textrm{g}$ L$^{-1}$ . On the other hand, those of snow samples in three times snow events were ranged from 122.4 to 293.3 $\mu\textrm{g}$ L$^{-1}$ . As might be expected, EC showed the significantly high scavenging rate at the initial rainfall. The average total carbon (TC) scavenging rate by washout mechanisms was 57.6% for five rainfall events. The scavenging rate of EC gradually increased in proportion to the increasing rainfall intensity and rainfall amount.

Evaluation on the Landslide Stability Triggered by Rainfall (강우로 인한 사면활동의 안정성 평가)

  • Sagong Myung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1101-1106
    • /
    • 2004
  • Rainfall induced landslides are disasters causing sever damage on the human life and the infrastructures. In this paper, a simplified procedure to evaluate the slope stability problems induced by rainfall by modifying the Iverson's pressure head dispersion model. The proposed approach extends the applicability of the Iverson's model in to the cases of higher rainfall intensity than the permeability of the soil by incorporating the existence of overland flow. In addition, the Manning equation is applied to calculated the depth of overland flow. From the calculated depth of overland flow, shear stress acting on the surface is included for the driving component triggering the landslides. From the analysis of a case study, the long term rainfall alters the stability of slope.

  • PDF