DOI QR코드

DOI QR Code

Characterization of Debris Flow at Various Topographical Division Sizes

지형분할 격자크기에 따른 토석류 흐름 특성

  • Received : 2014.12.12
  • Accepted : 2015.02.10
  • Published : 2015.03.01

Abstract

The rainfall pattern, rainfall intensity as well as topographical conditions used for the analysis of debris flow affect, in general, the magnitude of debris flow and flow velocity, when debris flow occurs. The consideration of topographical conditions implies that the topography is equally divided into grids and the slope of inside the grid is computed as an average, leading to, in turn, obtain the closer results to the reality as the grid is smaller in the case of the severely bended topography. Although the size of grid should be as small as possible so as for more accurate analysis of debris flow, the analysis of debris flow has been so far conducted by using sparsely divided grids due to the limitation of analysis algorithm, computational ability and running time. So, it is necessary to suggest an appropriate grid size for the practical approaches. Therefore, this study presents the evaluation of the effect of the size of a grid on the debris flow besides the factors which referred to the previous studies such as accumulated rainfall, rainfall intensity and rainfall duration time. From this, it enables to suggest a rational and practical grid size for topography to be divided.

토석류가 발생할 때는 강우패턴, 강우강도 및 해석을 위한 지형여건에 따라 토석류의 발생량과 흐름의 속도가 달라진다. 지형여건의 고려는 일정규모의 격자로 지형을 구분하고 구분된 격자 내의 지형경사는 평균경사로 가정하여 계산하므로 굴곡이 심한 지형에서는 분할되는 격자를 세분할수록 실제와 근접한 결과를 얻을 수 있게 된다. 그러나 지금까지는 해석알고리즘 및 컴퓨터 계산능력, 해석수행 시간 등의 한계로 인해 지형분할 격자를 상당히 크게 구분하여 수행하고 있다. 그러나 토석류 해석의 정확도를 위해서는 지형구분 격자크기를 가급적 작게 하여야 하므로, 실무적 접근을 위한 적절한 격자규모의 제안이 필요하게 된다. 따라서 본 논문에서는 기존 연구에서 논의되었던 누가 강우량, 강우강도, 강우지속시간 및 선행 강우량 등의 강우 특성 이외에 지형분할 격자크기가 토석류 흐름에 미치는 영향을 평가하고 이로부터 합리적이고 현실성 있는 지형분할규모를 제시하였다.

Keywords

References

  1. 건설교통부 (2000), 1999년도 수자원관리기법 개발연구조사 보고서 제1권 별책부록, 한국건설기술연구원, pp. 1-60.
  2. Christen, M., Buhler, Y., Bartelt, P., Leine, R., Glover, J., Schweizer, A., Graf, C., McArdell, B. W., Gerber, W., Deubelbeiss, Y., Feistl, T. and Volkwein, A. (2012), Integral hazard management using a unified software environment, 12th Congress INTERPRAEVENT 2012 - Grenoble / France, pp. 77-86.
  3. Hwang, S. H., Kim, H. J., Ham, D. H. and Lee, D. R. (2012), Review of domestic landslide and debris flow forecast standard using hydrologic data, Korean Society of Civil Engineers (KSCE), pp. 1895-1898 (in Korean).
  4. Imran, J., Harff, P. and Parker, G. (2001), A numerical model of submarine debris flow with graphical user interface, computers & geosciences, Vol. 27, No. 6, pp. 717-729. https://doi.org/10.1016/S0098-3004(00)00124-2
  5. Iverson, R. M., Ried, M. E. and LaHusen, R. G. (1997), Debrisflow mobilization from landslides, Annual Review of Earth and Planetary Sciences, Vol. 25, pp. 85-138. https://doi.org/10.1146/annurev.earth.25.1.85
  6. Jeong, S. W. (2010), Flow characteristics of landslides/debris flows: sediment rheology and mobility and mobility of landslides, Proceedings of Korean Society of Engineering Geology (KSEG) Conference 2010, KSEG, pp. 79-80 (in Korean).
  7. Jeong, S. W. (2011), Rheological models for describing fineladen debris flows: grain-size effect, Journal of Korean Geotechnical Society, Vol. 27, No. 6, pp. 49-61 (in Korean). https://doi.org/10.7843/kgs.2011.27.6.049
  8. Kim, B. S., Bae, Y. H. and Hong, S. J. (2009), A risk assessment of flash flood and debris flow occurrence using gridded rainfall, Korean Society of Civil Engineers(KSCE), pp. 2691-2694 (in Korean).
  9. Kim, S. K. and Seo, H. S. (1997a), An analysis of debris flow movement using rheological model, Journal of Korean Geotechnical Society (KGS), Vol. 13, No. 5, pp. 133-143 (in Korean).
  10. Kim, S. K. and Seo, H. S. (1997b), Rheological characteristics of debris flows, Journal of Korean Geotechnical Society (KGS), Vol. 13, No. 5, pp. 125-131 (in Korean).
  11. Kim, T. Y., Yoon, H. S., Cho, J. M. and Kim, H. (2014), Study of debris flow simulation FLO-2D model based on LiDAR DEM of Mt. umyeon, The Korean Society of Disaster Information (KOSDI), pp. 161-162 (in Korean).
  12. Lloyd-Davies, D. E. (1906), The elimination of storm water from sewerage systems. Proc., Inst. Civ. Eng., London, Vol. 164, pp. 41-67.
  13. Medina, V., Hurlimann, M. and Bateman, A. (2008), Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula, Landslides Vol. 5, pp. 127-142. https://doi.org/10.1007/s10346-007-0102-3
  14. O'Brien, J. S. and Julien, P. Y. (1985), Physical properties and mechanics of hyper-concentrated sediment flows, Proceedings of the Specialty Conference on Delineation of Landslide, Flash Flood and Debris Flow Hazard in Utah, Utah State University, Utah, pp. 260-279.
  15. O'Brien, J. S. and Julien, P. Y. (1988), Laboratory analysis of mud flow properties, Journal of Hydraulic Engineering, Vol. 114, No. 8, pp. 877-887. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(877)
  16. O'Brien, J. S., Julien, P. Y. and Fullerton, W. T. (1993), Twodimensional water flood and mudflow simulation, J. Hydr. Engrg., ASCE, Vol. 119, No. 2, pp. 244-261. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)
  17. Pudasaini, S. and Hutter, K. (2007), Avalanche dynamics-dynamics of rapid flows of dense granular avalanches. Springer-Verlag, Berlin. pp. 96-110.
  18. Rickenmann, D., Laigle, D., McArdell, B. W. and Hubl, J. (2006), Comparison of 2D debris-flow simulation models with field events, Computational Geosciences, Vol. 10, pp. 241-264. https://doi.org/10.1007/s10596-005-9021-3
  19. Ryu, H. J., Shin, J. H., Seo, H. S., Kim, G. H. and Lee, S. W. (2012), A model for evaluation of debris flow risk in a watershed, Korean Society Of Hazard Mitigation, Vol. 12, pp. 67-76 (in Korean). https://doi.org/10.9798/KOSHAM.2012.12.4.067
  20. Savage, S. and Hutter, K. (1989). The motion of a finite mass of a granular material down a rough incline, Journal of Fluid Mechanics Vol. 199, pp. 177-215. https://doi.org/10.1017/S0022112089000340
  21. Skidmore, A. K. (1989), A comparison of techniques for calculating gradient and aspect from a gridded DEM, International Journal of GIS, Vol. 3 pp. 323-334.
  22. Takahashi, T. and Tsujimoto, H. (1984), Mechanics of granular flow in inclined chute. Journal of Hydraul. Coast. Environment Engineering, JSCE, Vol. 565, No. 2-39, pp. 57-71 (in Japanese).
  23. Wang, N. S., Yi, R. H. and Liu, D. (2008), A solution method to the problem proposed by Wang in voting systems, Journal of Computational and Applied Mathematics, Vol. 221, pp. 106-113. https://doi.org/10.1016/j.cam.2007.10.006