• Title/Summary/Keyword: intelligent control system

Search Result 2,865, Processing Time 0.039 seconds

Modeling Mobility Agents in Supervisory and Controlling Systems Based on Nets within Nets (ICCAS2005)

  • Xiaohui, Hu;Jianwu, Dang;Xingshe, Zhou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.433-437
    • /
    • 2005
  • The goal of our research is to develop a formal modeling methodology for supervisory and controlling systems that have artificially intelligent features. This approach is agent-based and central to the development of the model of mobility agent considering reactivity for real-time purpose and deliberation for optimal realization and safe-fail problems for critical systems like Intelligent Transportation Systems by high-level Petri net. By using nets within nets we investigate the concurrency of the system and the agent in one model without losing the needed abstraction, and synchronous channels are introduced to denote the coordination and communication. Finally an example is demonstrated.

  • PDF

Optimization of active vibration control for random intelligent truss structures under non-stationary random excitation

  • Gao, W.;Chen, J.J.;Hu, T.B.;Kessissoglou, N.J.;Randall, R.B.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.137-150
    • /
    • 2004
  • The optimization of active bars' placement and feedback gains of closed loop control system for random intelligent truss structures under non-stationary random excitation is presented. Firstly, the optimal mathematical model with the reliability constraints on the mean square value of structural dynamic displacement and stress response are built based on the maximization of dissipation energy due to control action. In which not only the randomness of the physics parameters of structural materials, geometric dimensions and structural damping are considered simultaneously, but also the applied force are considered as non-stationary random excitation. Then, the numerical characteristics of the stationary random responses of random intelligent structure are developed. Finally, the rationality and validity of the presented model are demonstrated by an engineering example and some useful conclusions are obtained.

Optimal Sliding Mode Control of Anti-Lock Braking System

  • Ebrahimirad, H.;Yazdanpanah, M. J.;Kazemi, R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1608-1611
    • /
    • 2004
  • Anti-lock brake systems (ABS) are being increasingly used in a wide range of applications due to safety. This paper deals with a high performance optimal sliding mode controller for slip-ratio control in the ABS. In this approach a sliding surface square is considered as an appropriate cost function. The optimum brake torque as a system input is determined by minimizing the cost function and used in the controller. Simulation results reveal the effectiveness of the proposed sliding mode controller.

  • PDF

A study on Development of Soft-Motor Controller using EtherCAT (EtherCAT을 이용한 소프트 모터제어기 개발에 관한 연구)

  • Moon, Yong-Seon;Lee, Young-Pil;Seo, Dong-Jin;Lee, Sung-Ho;Bae, Young-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.826-831
    • /
    • 2007
  • In this paper, we proposed new method of soft-motor control which is control method allowing motor control within control stage by using EtherCAT which is real time motion control network of high speed. We also evaluated performance of the system and verified possibility and effectiveness of application into real system through experiments.

The Development of Motor Controller based on Network using Optic-EtherCAT (광 EtherCAT을 이용한 네트워크 기반 모터 제어기 개발)

  • Moon, Yong-Seon;Lee, Gwang-Seok;Seo, Dong-Jin;Bae, Young-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.467-472
    • /
    • 2008
  • In this paper, we design, implement and apply network physical layer to 100 BaseFx optical cable interface module based on industrial ethernet protocol which is physical layer of EtherCAT that has ensure its open standard ethernet compatibility which having been provided with real time of control in network of intelligent service robot, can be process numerous data to sensor and motor control system. Through BLDC motor control performance tests, we try to propose suitability as internal network of intelligent service robot and automation system.

Inverter Control algorithm for UPS using Dead-Beat controller with disturbance Observer (외란 관측기와 Dead-Beat 제어기를 이용한 UPS 인버터 제어 알고리즘)

  • Jang, J.Y.;Song, J.H.;Choy, I.;Choi, J.Y.;Yoo, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1196-1198
    • /
    • 2000
  • In this paper, a new approach for digital feedback control of PWM inverter is proposed, in which an output DB(Dead-Beat) control is achieved combined with a simple disturbance observer. The deadbeat controller, which is constructed multiple loop control scheme for PWM inverter, is used for fast transient response. The disturbance observer can make the disturbances be cancelled by adding feedforward compensating loop in controller. The simulation result show the proposed control scheme can achieved good voltage regulation against large load variations.

  • PDF

Intelligent Control of Robot Manipulators by Learning (학습을 이용한 로봇 머니퓰레이터용 지능제어)

  • Lee DongHun;Kuc TaeYong;Chung ChaeWook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.330-336
    • /
    • 2005
  • An intelligent control method is proposed for control of rigid robot manipulators which achieves exponential tracking of repetitive robot trajectory under uncertain operating conditions such as parameter uncertainty and unknown deterministic disturbance. In the learning controller, exponentially stable learning algorithms are combined with stabilizing computed error feedforward and feedback inputs. It is shown that all the error signals in the learning system are bounded and the repetitive robot motion converges to the desired one exponentially fast with guaranteed convergence rate. An engineering workstation based control system is built to verify the effectiveness of the proposed control scheme.

Robust Control of Planar Biped Robots in Single Support Phase Using Intelligent Adaptive Backstepping Technique

  • Yoo, Sung-Jin;Park, Jin-Rae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.269-282
    • /
    • 2007
  • This paper presents a robust control method via the intelligent adaptive backstepping design technique for stable walking of nine-link biped robots with unknown model uncertainties and external disturbances. In our control structure, the self recurrent wavelet neural network(SRWNN) which has the information storage ability is used to observe the uncertainties of the biped robots. The adaptation laws for all weights of the SRWNN are induced from the Lyapunov stability theorem, which are used for on-line controlling biped robots. Also, we prove that all signals in the closed-loop adaptive system are uniformly ultimately bounded. Through computer simulations of a nine-link biped robot with model uncertainties and external disturbances, we illustrate the effectiveness of the proposed control system.

A Study on the Fuzzy-Neural Network Controller for Load Frequency Control (부하주파수제어를 위한 퍼지-신경망 제어기에 관한 연구)

  • 정형환;김상효;주석민;정문규
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.137-144
    • /
    • 1998
  • This paper proposed a optimal scale factors technique of a fuzzy-neural network for a load frequency control of two areas power system. The optimal scale factors control technique is optimize from an initial fuzzy logic control rule, and then is learned with an error back propagation learning algorithm of the fuzzy-neural network. In application two areas the load frequency control of the power system, it hopes to have response characteristic better than optimal control technique which is the conventional control technique and to show to minimize a frequency deviation and reaching and settling time of a tie line power flow deviation

  • PDF

FUZZY CONTROL: DESIGNING VIA FUZZY MODELLING

  • Hirota, Kaoru;Pedrycz, Witold
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.877-880
    • /
    • 1993
  • Fuzzy control algorithms are developed based on fuzzy models of systems. The control issues are posed as multiobjective optimization problems involving goals and constraints imposed on system's variables. Two basic design modes embrace on-and off-line control development. The first type of design deals with the time and state-dependent objectives and pertains to control determination based upon the current state of the system. The second design mode gives rise to explicit forms of fuzzy controller that is learned based on a given list of state-control associations. Both the fuzzy models as well as fuzzy controllers are realized as logic processors.

  • PDF