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Abstract Fuzzy control algorithms are developed based on fuzzy
models of systems. The control issues are posed as multiobjective
optimization problems involving goals and constraints imposed on system's
variables. Two basic design modes embrace on- and off-line control
development . The first type of design deals with the time and state-dependent
objectives and pertains to control determination based upon the current
state of the system. The second design mode gives rise to explicit forms
of fuzzy controller that is learned based on a given list of state-control
associations. Both the fuzzy models as well as fuzzy controllers are

" realized as logic processors.

1. Introduction

The current methodology of development of fuzzy control
algorithms and fuzzy controllers, in particular, is essentially
experiment-driven. This error-and-trial attitude that is so
dominant nowadays in various applications, is motivated by
the two main reasons. On one hand, one can refer to a remarkable
easiness with which a designer can modify the fuzzy control
algorithm and experiment with it through a sequence of well-
thought interactions with the environment. On the other side,
one can encounter a lack of a suitable modelling platform that
could make the overall design process more systematic and
coherent. The primary requirement to achieve this goal is to set
up an appropriate modelling environment which could preserve
a conceptual compatibility and integrity throughout the fuzzy
model and the control algorithm. By this form of compatibility
we mean that the fuzzy model and the control algorithm should
operate at the same level of information granularity, cf. [12]
[5] [7] [8]. This implies that these two essential components
should be perceived within the same range of precision satisfying
a fundamental requirement of information compatibility .

The purpose of this study is to look at fuzzy control and
the design of control algorithms from a general perspective of
fuzzy system modelling .Firstly, we will briefly study a
paradigm of fuzzy modelling. The very nature of this type of
modelling as exclusively carried out through manipulation at
the level of linguistic labels rather than numerical quantitates
will be emphasized. Secondly, we will concentrate on designing
control algorithms making a clear distinction between on-line
and off-line control procedures. From the implementation point
of view, the fuzzy models as well as the control algorithms
will be conveniently completed in terms of logic-based neural
networks.

2. Fuzzy modelling: logical approximation of
mappings between fuzzy partitions.

Fuzzy models are developed at the level of linguistic labels.
These labels, called also information granules, are commonly
used to describe the spaces of the variables of the system [12]
[7]. The level of generality of fuzzy models places them in
between a class of models used for pure numerical processing
and those Al constructs of qualitative modelling, cf. [10]. We
will be concerned with fuzzy models of single input- single-
output dynamical systems (the extension dealing with many-
input models is fairly straightforward). The fuzzy partitions of
the corresponding state and control space will be denoted by X
and U, respectively. Assuming that these spaces involve "n"
and "m" linguistic labels we obtain

X ={X,X,....X,}and U= {U,U,,...,U_}.

The elements of X and U should comply with some general
requirements of semantic integrity that make them conceptually
well sound. In general, they should "cover” the entire space,
be unimodal, and sufficiently distinguishable. In particular, the
elements of the fuzzy partitions (fuzzy sets) produced within
fuzzy clustering satisfy the above requirements. Each datum in
the state and control space, as it is viewed at the conceptual
level of the fuzzy model, is represented in terms of these labels.
This realization gives rise to the internal vector representation
provided in the unit hypercubes of the input and state space
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(x €[0,1]" and u €[0,1]™, respectively). This translation can
be carried out in many ways; the use. of possibility and necessity
measures is quite-common [11] {1]. More generally, one can
look at this conceptual transformation as a sort of nonlinear
and nonuniform linguistic data quantization.

The fuzzy model is developed at the level of the linguistic
labels with its exclusive goal of expressing rigorously
relationships between the elements of X and U occurring in
successive discrete time moments. From a formal point of
view one can anticipate that the fuzzy model (FM) realizes a
logic-inclined approximation between the unit hypercubes
induced by the fuzzy partitions, cf. (3] {6] [9]. The perspicuous
logical nature of this approximation will be reflected by the
architecture of the approximation scheme being implemented
as a logic processor, (LP) cf. [3] [9]. Let us remind that the
logic processor is designed with the aid of AND and OR neurons
being structured into a three-layer neural network. These
logical neurons are governed by the following expressions,
-OR neuron:

y=OR (x;w)
namely,
y = OR[x; ANDw,, x, ANDw,, ...

where w= [w, w,, ...

, X, AND w ]
. w,] € [0,1]" describes a vector of its
connections (weights). The standard implementation of the
fuzzy set connectives standing there involves triangular
norms, namely the OR and AND operators are realized by
some s- and t-norms, respectively. This translates the above
expression into the form,
y= él {xi t wi]
-AND neuron:
In the AND neuron, the OR and AND operators are utilized in
a reversed order. We obtain
y = AND(x; w)
which expressed in the notation of the triangular norms reads
as
n
y=T [xitwj]

The architecture of the logic processor includes a single hidden
layer that consists of the AND neurons, followed by the output
layer being formed by the OR neurons, cf. [4]. The goal of
the learning itself is to approximate the relationship between
the corresponding elements of the hypercubes. The learning is
usually completed in a supervised mode. The connections of
the neurons are adjusted based on the gradient of the specified
performance index.

The first-order dynamical model realized by the logic processor
will be described as

x(k+1) = LP(u(k), x(k), W) (1)

where W is used to embrace all the connections of the logic
processor while the vectors u(k), x(k), and x (k+1) summarize

the degrees of activation of the linguistic labels in U and X
observed in successive time instances. The learning schemes
utilized for the training of this class of the logic-based neural
networks are well-documented; for details the reader is referred
to [9].
3. Control in fuzzy models - problem formulation
and architecture

In general, one can consider control activity as aiming at a
maximal simultaneous satisfaction of control goals and
constraints specified for the system. These control objectives,
no matter whether they are given precisely or imprecisely, can
be uniformly expressed as the elements in the corresponding
fuzzy partitions. Let the goal defined in X be equal to g while
the constraint given in U be expressed as ¢. For the fuzzy
model (1) the control task reads as the following vector
optimization problem

Max 7,(g, x(k+1)

Eéix Frle, uk)) @
where 7, and 7, are predicates describing referential relationships
to be satisfied by the objectives. We will denote them by
REF(.,.). Not elaborating now on their numerical character, let
us stress that these operations may embrace aspects of matching
two objects, determining their difference ( dissimilarity),
expressing a level of dominance or inclusion existing between
them, etc. Generally, the objectives g and ¢ could be functions
of time as well as they may depend upon the current state
variable.

The underlying optimization problem of fuzzy control (2)
will be studied within the architecture visualized in Fig.1 and
composed of several functional blocks:
Referential blocks. These are utilized to generate the degrees of
satisfaction of the relationships between the control objectives
and the fuzzy sets describing the system. The basic idea realized
there is concerned with the referential operations performed on
fuzzy sets. The operations are defined pointwise for each
coordinate of the unit hypercube.
The list of useful operations includes:
- similarity (equality). The degree of its satisfaction by x and
a, x, a € [0,1] is embodied by considering the equality index
defined as [6], EQ(x,a)=a = x

aEx:%[(a(px)A(x(pa)+(§<pi)/\(i(p§)]
where A stands for the minimum operation, overbar denotes
complement, and ¢ is used to describe pseudocomplement
(implication), apx=sup {c € [0,1] | atc < x}.
- inclusion. The degree of inclusion of x in a, INCL(x,a), is
expressed as

INCL(x,a)=x@a
-difference. The difference is viewed as a feature dual to the
property of similarity, namely
DIFF(x,a)=1-EQ(x,a)
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- dominance. The degree of dominance, DOM(x,a), defined
as

DOM(x,a) = apx
represents a degree to which x dominates a.
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Fig.1. Architecture of model-based fuzzy control

-the fuzzy model (FM) serves as a standard single-step predictor
determining outcomes (x(k+1)) produced by u(k) when the
system is described by x(k). The functional blocks ¥, and¥,
return the degrees of satisfaction of the objectives, which
subsequently are plugged into the aggregation array. At the
level of the array, we are looking for the global satisfaction of
these objectives achieved at all the elements of X x 7L
aggregation array. The array as shown in the above figure
aggregates the individual levels of satisfaction of the objectives.
The value t; specifies a degree to which the i-th and j-th
coordinate of the constraint and the goal are satisfied. This
degree is determined by AND-ing the values of the pointwise
referential computations produced by ¥, and #,. The original
vector optimization problem (2) is then replaced by its scalar
version taking on the form,
Min T
u(k)

€))
where nm
T=1 - hlﬂz 4

ij

and tij=‘ﬂiAND§j

4. Control determination
In this section we will exploit two conceptually distinct

modes of fuzzy control determination such as on-line and
off-line control computations.
4.}. On-line computations

The thrust of this form of the computations is to determine
control u such that (3) is minimized for the fixed goal and
constraint. The optimization problem is thus specified in the
form,

minyeo,1Q

The iterative scheme reads as

u(iter+1)= u(iter)- a aQ
o [0,1]. Control u is iteratively adjuswgte?lowmg the
gradient of Q. The main advantage of on-line control resides
with an evident flexibility in expressing both the goal and
constraint sets as being time and state dependent, namely
g=g(k,x(k)), e=c(k,x(k)). Once the goal or constraint are
modified, the relevant control has to be recomputed. This,
unfortunately, could be associated with a substantial
computational burden.
4.2. O0ff-line control

The leading concept of on-line control is to synthesize a
control algorithm through a collection of precomputed
associations between some states and control actions. In this
sense these associations can be aggregated into an explicit
single control architecture (fuzzy controller).

The development of off-line control consists of two phases:

(1) in the first step one acquires associations between some
states x (k) and their resulting control. Denote a family of these
cases (associations) by R,

(ii) subsequently. the elements of R are used to learn a closed
form of the control algorithm expressed as u= ®(x) where ¢
is a mapping between the state and control space.

In the following design we will assume that the goal and
constraint are time invariant and they do not depend on the
current state of the system. Both the above phases (i)-(ii) can
be realized in several ways. Here we will concentrate on one
of them originating within the general stream of fuzzy
neurocomputations [9].

The associations can embrace either specific fuzzy sets of
state and control (that are usually quite convincing from a
numerical end of the design) or could be selected in a general
form guided eventually by some additional criteria. Regarding
the specific type of fuzzy sets used in the construction of the
controller, one can select x and u viewed as singletions, say
[00..010...0] . The relevant associations as built between
x's and u's selected in this way can be determined quite
easily. The computations become reduced to a straightforward
enumeration of the edges of the unit hypercube of control and
picking up the best singleton (namely the one yielding
minimum of (3)). The inevitable drawback of this method is
that the produced associations might be characterized by a
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relatively high level of the performance index Q. This is
obvious considering the coarseness of the control actions taken
into account during this search.

Another option worth exploring is to carry out a regular
on-line control computations for x provided. These
computations usually produce associations with lower values
of Q (as we are not restricted to {0,1} membership values in
control ). In comparison to the first procedure, this option is
definitely more computationally demanding.

Despite the character of the state fuzzy sets, the first phase
provides us with the associations

R={ xp, 0, A }
1=1,2,....N, where A, stands for the confidence level attached
to the 1-th association and taken as a straightforward complement
of the performance index, A;=1-Q. Obviously, the higher A,
the more significant the association. It should be emphasized
that the states used to generate these associations should be
representative, so that the resulting control mapping can be
general enough and capable of providing meaningful actions
even for a significant diversity of the environment.

The set of associations ® will be used next in building an
explicit control mapping between x and u. This construct
constitutes the objective of the second phase of the design. The
mapping can be implemented in various ways. Here we
concentrate on the architecture of the logic processor, cf. Section
2. Its architecture bears a strong resemblance to standard fuzzy
controllers. More formally we will write it down as

u=LP(x;w)
where w stands for a family of the connections of the processor.
The parametric learning of the LP is completed based on the
set of associations K. The minimized performance index is of
the form of a weighted gum of the distances,

Q=) Il u-LP(x;,w)ll A;
1=1

that includes A|'s as the relevant weighting factors of the
corresponding cases in &, This allows us to discount for weaker
associations and force them to have less significant impact on
the results of the learning procedure .
The architecture of the logic processor reflects the topology of
any fuzzy controller in the sense that:
- the hidden layer (AND neurons) builds a collection of the
conditions of the rules out of the subconditions appearing at
the inputs of the network,
-the output layer (OR neurons) combines the conditions
supporting the individual control actions. Hence each " if-then”
control statement reads as
if -~

(subcond,; and subcond,, and... and subcond ) or

(subcond,; and subcond,; and... and subcond,) ...
then  control,

AND neuron OR neuron

5.Conclusions
We have proposed a systematic and algorithmic way of

designing fuzzy control algorithms. The essential point of the
entire design procedure relies on the availability of the relevant
fuzzy model. In contrast to broadly utilized operator-oriented
approach to fuzzy control, the one discussed now is primarily
model-oriented and shares all the advantages available within
this methodology. In particular, an extensive characteristics of
closed-loop control can be worked out in terms of fuzzy
stability, fuzzy controllability, etc., where all these well-known
terms of control engineering are moved from their original
numerical niches and reformulated in the language of the
linguistic quantities. The construction of fuzzy models and
fuzzy controllers exploits fuzzy neural networks (logic
processors). Their learning is completed following standard
gradient-like methods; some other techniques like genetic
algorithms [2] could be found beneficial as well.

Acknowledgment
Support from the Natural Sciences and Engineering Research Council

of Canada and MICRONET is gratefully acknowledged.

b.References

1. D. Dubois, H. Prade, Possibility Theory - An Approach 1o Computerized
Processing of Uncertainty, Plenum Press, New York, 1988.

2. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, Reading, MA, 1989.

3. K. Hirota, W. Pedrycz, "Fuzzy logic neural networks: design and
computations”, Int. Joint Conf. on Neural Networks, Singapore,
18-21 November 1991.

4. W. Pedrycz, Neurocomputations in relational systems, IEEE Trans. on
Pattern Analysis and Machine Intelligence, 13, 1991, 289-296.

5. W. Pedrycz, Fuzzy set framework for development of a perception
perspective, Fuzzy Sets and Systems, 37, 1990, 123-137.

6. W. Pedrycz, Direct and inverse problem in comparison of fuzzy data,
Fuzzy Sets and Systems, 34, 1990, 223-236.

7. W. Pedrycz, Selected issues of frame of knowledge representation
realized by means of linguistic labels, Int. J.of Inteltigent Systems,
7, 1992, 155-170.

8. W. Pedrycz, Fuzzy modelling: fundamentals, construction and evaluation,
Fuzzy Sets and Systems, 41, 1991, 1-15.

9. W. Pedrycz,Fuzzy Control and Fuzzy Systems, 2nd edition, Research
Studies Press/J. Wiley, Taunton/New York, 1993,

10. M. Sugeno, T. Yasukawa, A fuzy-logic-based approach to qualitative
modeling, [EEE Trans. on Fuzzy Systems, 1, 1993, 7-31.

11. L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy
Sets and Systems, 1, 1978, 3-28.

12. L. A. Zadeh, Fuzzy sets and information granularity, in: M. M.
Gupta, R.K. Ragade, R. R. Yager, eds., Advances in Fuzzy Set
Theory and Applications, North Holland, Amsterdam, 3-18, 1979.

—880—



