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Robust Control of Planar Biped Robots in Single Support Phase
Using Intelligent Adaptive Backstepping Technique

Sung Jin Yoo, Jin Bae Park*, and Yoon Ho Choi

Abstract: This paper presents a robust control method via the intelligent adaptive backstepping
design technique for stable walking of nine-link biped robots with unknown model uncertainties
and external disturbances. In our control structure, the self recurrent wavelet neural network
(SRWNN) which has the information storage ability is used to observe the uncertainties of the
biped robots. The adaptation laws for all weights of the SRWNN are induced from the Lyapunov
stability theorem, which are used for on-line controlling biped robots. Also, we prove that all
signals in the closed-loop adaptive system are uniformly ultimately bounded. Through computer
simulations of a nine-link biped robot with model uncertainties and external disturbances, we
illustrate the effectiveness of the proposed control system.

Keywords: Backstepping design, biped robot, recurrent wavelet neural network, robust control.

1. INTRODUCTION

The biped robots have been received increased
attention due to several properties such as its human-
like mobility and the high-order dynamic equation.
These properties enable the biped robots to perform
the dangerous works instead of human beings. Thus,
the stable walking control of the biped robots is a
fundamentally hot issue and has been studied by many
researchers [1-9]. However, because of the inherent
instability caused by two legged locomotion, it is
difficult to control the biped robots. Besides, unlike
the robot manipulator, the biped robot has an
uncontrollable degree of freedom playing a dominant
role for the stability of their locomotion in the biped
robot dynamics. In recent year, various control
techniques such as computed torque control [1,2],
sliding model control [2,3], active force control [4] are
applied to control the biped robot. Especially, [2] and
[5] have contributed for the dynamic modeling and
robust control of the five-link biped robot and the
nine-link biped robot, respectively. However, these
works have a problem that the bounds of the
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uncertainties and disturbances must be known for the
design of the control law. Actually, in real applications,
it is difficult to predict or to know in advance the
parameter variations of the biped robot system and the
external disturbances changed according to the
environment. In the case of [4], the active force
control known as “disturbance rejector” is applied to
control the five-link biped robot, but the model
uncertainties of the robot system are not considered.
That is, the external disturbance is only treated.

Generally, the complete three-dimensional walking
motion of the biped robot can be explained by a single
support phase, a double support phase, double impact,
switching transformation, and by motion in the
sagittal plane as well as in the lateral plane [6-8]. Thus,
there is a need to switch the dynamic equations and
controllers during the iterative computation of the
simulation program. However, this method causes the
complex programming problems [1,9]. Accordingly,
in this paper, to examine the feasibility of the
proposed control scheme, we consider the motion of
the biped robot in sagittal plane during the single
support phase.

On the other hand, neural networks (NNs) have
been applied as an attractive tool to approximate the
complex nonlinear systems due to their excellent
learning capabilities and parallel processing structures.
Recently, wavelet neural networks (WNNs), which
absorbs the advantages of high resolution of wavelets
and learning of NNs, have been proposed to guarantee
the fast convergence and have been used for the
identification and control of nonlinear systems [10-12].
However, the WNN does not require prior knowledge
about the plant to be controlled due to its feedforward
structure. Therefore, without the aid of tapped delays,
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the WNN is unable to represent a dynamic mapping.
Accordingly, we proposed the self recurrent wavelet
neural network (SRWNN), which combines the
properties of attractor dynamics of recurrent neural
network (RNN) and the fast convergence of WNN,
and applied successfully it to the estimation and
control of nonlinear systems [13,14]. In [§8,9,15], NN-
based control systems have been developed for biped
robot systems.

The adaptive backstepping control is a systematic
and recursive design methodology for the feedback
control of nonlinear systems with parametric
uncertainties. Unlike the feedback linearization
method with the problems such as the precise model
requirement and the cancellation of useful nonlinear
terms, the backstepping approach offers a choice of
design tools for accommodation of uncertainties and
nonlinearities, and can avoid wasteful cancellations
[16]. The key idea of the backstepping design is to
select recursively some appropriate state variables as
virtual inputs for lower dimension subsystems of the
overall system and the Lyapunov functions are
designed for each stable virtual controller [16].
Therefore, the finally designed actual control law can
guarantee the stability of total control system. In spite
of these advantages of the backstepping design, the
adaptive backstepping control method has two major
problems: “linearity in the unknown system parame-
ers” and “determination of the regression matrix” [17].
To eliminate these defects, Kwan and Lewis [17]
proposed the NN based robust backstepping control
method for nonlinear robotic systems with arbitrary
uncertainties.

In this paper, the intelligent adaptive backstepping
control (IABC) method wusing the powerful
approximation ability of the SRWNN is proposed for
stable walking of biped robots. The internal
uncertainties and external disturbances of the biped
robot system are first integrated in the robot dynamics,
then the SRWNN is employed as the uncertainty
observer to estimate the integrated total uncertainty
term. The adaptation laws for weights of the
uncertainty observer are induced from the Lyapunov
stability theorem, which are used to guarantee the
uniform ultimate boundedness of all signals in the
closed-loop system. Finally, the simulation results for
the nine-link biped robot are provided to demonstrate
the effectiveness of the proposed control scheme.

This paper is organized as follows. In Section 2, we
introduce the model of biped robot systems with
uncertainties and the basics of the SRWNN, and
present the robust control problem for the biped robot
system. In Section 3, the IABC system for solving the
robust control problem of the biped robot system is
proposed. In addition, the stability, robustness, and
performance of the proposed control system are
analyzed based on Lyapunov stability theorem.

Simulation results are discussed to confirm the
effectiveness and applicability of the proposed method
in Section 4. Finally, Section 5 gives some
conclusions.

2. PRELIMINARIES

2.1. Model of planar biped robots with uncertainties
The dynamics of the biped robot with model

uncertainties in the single support phase can be

expressed in the following Lagrange form [18]:

M(q)q +C(q,q) + G(q) + F(q) +I1(q.9,7) =7, (1)

where

1(9,9,7) = -M(@)M (@) {7 - 7, - C(q,9)~ G(@) - F(@)}
+{r-Cq.9) - G(q) - F(@)}.

denotes the uncertainty of the robot system, and q,
q, qeR" are the joint position, velocity, and
acceleration, respectively. M(q) € R™" is the inertia
C(q,q) e R”
centrifugal torques, G(q)< R" is the gravity vector,
F() e R’
control
C(q,9),
with uncertainties in the nominal values M(q),

C(q.9),

is the external disturbance.
Assumption 1: Assume that the nominal values
M(q), C(q.9), G(q), and F(q) are only known

values for a given biped robot. That is, suppose that
the actual values M(q), C(q,q), G(q), and F(q)

and the external disturbance r, are the unknown

matrix, denotes the Coriolis and
represents the friction term, and the
TeR". Also, M(q),

G(q), and F(q) are the actual values

input torque is

G(q), and F(q), respectively. 7, €R"

values.

Assumption 2: The system states q and q are
all available for feedback.

From Assumption 1, the uncertainty term Il(q,
4,7) cannot be computed. Accordingly, in this paper,
we consider the control problem of the nine-link biped
robot with the uncertainty term I1(q,q, 7).

2.2. SRWNN structure
The SRWNN has N,

H

N, x N, mother wavelets and consists of four layers:

inputs, one output, and

an input layer, a mother wavelet layer, a product layer,
and an output layer [14]. Each node of a mother
wavelet layer has a mother wavelet and a self-
feedback loop. The SRWNN output y is defined as
follows:
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YY) =3 W@, (N)+ Y (), @)

where N denotes the number of iterations, x,
represents the & -th input of the SRWNN, w, is the
j -th connection weight between product nodes and

output nodes, a, is the k -th connection weight

between the input nodes and the output node, and the
term @ (N) is defined as

@, =] [oe, 0, with 2,3 ="20 "

Jk

where the subscript jk indicates the k-th input term
of the j-th wavelet, @(x) denotes the mother wavelet
function defined as @(x)=—xexp(~1x’) which has
the universal approximation property [12]), m, and

d, are the translation factor and the dilation factor of

the wavelets, respectively. In addition, the inputs u; of

the wavelet nodes can be denoted by

u(N)=x,(N)+ ¢, (N -1)- 6, 3)

where 6, denotes the weight of the self-feedback
loop. The input of mother wavelet layer contains the
memory term ¢, (N —1), which can store the past
information of the network. In this paper, five weights
a, m dy, 6,, and w, of the SRWNN are

trained by the adaptation laws induced from the
Lyapunov stability analysis. For this end, the

weighting vector W € R** " ig defined as

Jk?

W=[g a, - ay, my my, - My My
My, 0 My, dy dy, - le,. dy
d, N, d NN, 6, 6, 911\/,. O
921\/,. e By, W Wy, I

“4)

3. INTELLIGENT ADAPTIVE
BACKSTEPING CONTROL SYSTEM

In this section, we design the robust control system
via the adaptive backstepping technique using the
SRWNN uncertainty observer. The dynamics (1) is

rewritten by using state variables X, =q and
X, =q as follows:

« =X,

X 2 )

Xz = M_I(Xl){r - C(XI,XZ) —G(Xl)

-F(X,)-TI(X,,X,,7)}.

The control objective is to produce an adaptive control
law for the state vector X, to track the reference

trajectory vector q,. Here, it is assumed that q,
4, and {, which denote the desired position,

velocity, and acceleration, respectively, are the

bounded functions of the time. We now design the

intelligent adaptive controller via the backstepping

design technique [16] shown in Fig. 1 step by step.
Step 1: Design the virtual controller X,.

For the tracking control of the state X, (¢), define the
tracking error as
Z,(1) =X, (1)~ q, (), (6)
and its derivative is
Zl(t) =X,(?) _ (ld(t) %
= V(1) - 4,(0),

where v(¢)=X,(t) is called the virtual control. Then,
the stabilizing function s(r) is defined as

() =-K,Z,(t) + q,(), @®)

where K, is a positive definite diagonal matrix. The
first Lyapunov function is chosen as

KO =22 O, ) ©)

Then, its derivative is

V(O =ZTOZ,0)
=Z] (X = 4,0 (10)
=Z; (1)(v(1) - s(1) - K, Z,(1)).
Here, if the virtual control v(f) is chosen as the

the Lyapunov stability
condition p,(¢) <0 is satisfied. Thus, the asymptotic

stabilizing function s(¢),

convergence of the position tracking error Z,(f) can

be guaranteed.
Step 2: Design the actual controller .

To design the actual controller 7, we define Z,(¥)
as Z,(t)=v(t)—-s(¢). And then, the derivative of

Z,(¢) isexpressed as

Z,(1) = v() =5(1)
=X.() + K Z,(1) — §,(1)
=M (X){r - C(X,,X,) -G(X,) -F(X,)}
+ F(Xl’xz,r) + K1 Zl(t) - qd(l‘),

(11)
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Intelligent Adaptive Backstepping
Control System
T4
Z, l
Adaptive Backstepping T o] Nine-link Biped q
N Controller Robot o
Zz . .
y § f, P
dr SRWNN Uncertainty
o Observer
W,
4
o e
- Adaptation Law
y, _

Fig. 1. Block diagram of the proposed IABC system.

where T['(X,X,,7)=-M " (X)II(X,,X,,7) is the
uncertainty term, 7 is a function of X, X,, and
Q, =[a, 4, ,]"- Accordingly, the uncertainty term
can be represented by I'(X,,X,,7)=T1(X,X,,Q,).

To design the backstepping control system, the
Lyapunov function is defined as

1
Vz(Zl(t):Zz(t))=I/1(t)+5Z2T(t)Z2(t)' (12)
And its derivative can be derived as follows:
Vz = Vl + Z; ([)Zz(t)
=2} (OZ, ()~ K Z, () + Z3 () 3

x[M7 (X){r -C(X,,X,) - G(X))
-F(X)} +T(X,X,,Qy) + K, Z,(1) - §,()].
From (13), if the backstepping control law 7 is
designed as follows:
7=C(X,,X,)+G(X))+F(X,)
+ M(Xl )[_F(Xl ’ Xz d Qd) - K1 Zl(t)
+ dd - K2Z2 (t) - Z1 (t)],

(14)

where K, is a positive definite diagonal matrix,
from (13), the backstepping control system is the
asymptotic stable. However, since the uncertainty
term I'(X,X,,Q,) is the unknown value, r cannot
be evaluated exactly.

Step 3: Design the intelligent adaptive backstepp-
ing controller 7.
To proceed with the controller development, the
following assumption is required.

Assumption 3: Let the input X of the SRWNN
belong to a compact set K,, and the SRWNN is

used to approximate the nonlinear function I'(X).
The optimal parameter vector W™ of the SRWNN

') is given as

WeKy,

W™ =arg min [ sup HF(X) -T(X| W)M, (15)

XeKy

where K, is a compact set of the parameter vector,
K, :{WIHWHSkw} denotes a ball of radius £,
and it is assumed that the optimal parameter vector

W is also restricted to K, .

According to the powerful approximation ability [13],
we employ the SRWNN uncertainty observer to
estimate the nonlinear uncertainty term I'(X,X,,

Q,) to a sufficient degree of accuracy. The inputs of
the SRWNN are the states X, and X,, and its
output is I. Thus the uncertainty term I’ (X, X,,
Q,) can be described by the optimal SRWNN plus a
reconstruction error vector ¢ as follows:

O(X)=I"(X|W)+¢

o s (16)
=IX|W)+[IM(X] W) -T(X| W) + &,

where X=(X,.X,), W=diag[pf/i]; W, e RN
(i=1,2,...,n) is the estimated vector of weighting
vector W of the SRWNN defined in Section 2.2.
Here, diag[-] denotes a diagonal matrix and W~ is

the optimal weighting matrix that achieves the
minimum reconstruction error.

Assumption 4: Assume that the optimal weight
matrix is bounded as follows:

[w

<W,
F M2

17
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where ““F denotes the Frobenius norm.

Note that the bounded value W,, is not required to

implement the controller proposed in this paper. This
value is only used for the stability analysis of the
proposed control system.

Taking the Taylor series expansion of f(X[W)

around W for the training of all weights of the
SRWNN uncertainty observer, we can obtain [19]

(X[ W) -I(X| W) =W'0,, + HW", W), (18)

where H(W*,W) is a high-order term,

W) =W —W(), (19)
and
N N n A n N T
o - [arl(X @) BrX i) AfX| W,.):l
W - ~ ~ e ~ .
aI/V] aWZ aVVn

Substituting (18) into (16), (16) can be represented by
IX)=C"(X|W)+e

=FXIW)+ W'y +a,

e < o, @1

where a=H(W',W)+¢ and p is a positive

(20)

constant. We propose the intelligent
backstepping control law as follows:

adaptive

r=C(X;,X,) +G(X)) +F(X,)
+MX)[-I(X|W)-K, 7, (22)
+ iid - Kzzz - Z1]~

Theorem 1: Suppose that the nine-link biped robot
(1) with model uncertainties and external disturbances
in the single support phase is controlled by the
proposed controller (22). And if the proposed control
system satisfies Assumptions 1-4 and the adaptation
law for all weights of the SRWNN system is chosen
as follows:

W, =40y, 2o, = O 23)

where i=1,..,n, A >0 whichis a diagonal element
of A is the tuning gain, & is the positive constant,
and O, and Z,, are the i-th elements of O,

and Z,, respectively, then

(i) there exist K,, K,, A, and o such that
the errors of states and adjustable weights of the
closed-loop system are uniformly ultimately bounded.

Also, these errors may be kept arbitrarily small by
adjusting the design parameters in the control law and

the adaptation law.
(ii) for the error vector E=[Z] Z] ”W“ I, the
F

error vector E satisfies the following inequality:

VTP o
[EO < LBl e + 221 - 20, (24)
m ¢
where y,, =max[l,4,,], 7, =max[1,4,]. Here, 4,
and A, are the maximum and minimum eigenvalue

of A, respectively. Besides, L, norm of the error
vector E can be obtained as

[E@)|, = max]|, |22 [EG,)|, /ﬁ% . (25)
Vm ¢
Proof:
(i) A Lyapunov candidate is chosen as
by =V, 4 (WL W), 26)

where () denotes the trace of a matrix. Differentia-

ting the Lyapunov function (26) and using (20) and
(22), we can obtain

Vs =1 — tr(WAW)
<-Z'KZ ~-Z)K,Z, + ||z2 "“a” 27
— W AW -0, Z1)}.

Then, using (21) and if the adaptation law (23) are
applied to the above equation, we can obtain

7y <—ZTK,Z, - ZTK,Z, +|Z,] p + otr(W"W).(28)
Using (19), Assumption 4, and the fact |Z,]|p<
2.1 +50%,
V,<-Z'KZ ~7Z)K,Z,
el o W] AW
Here, choosing K,=1+K}; 1 and K; denote

the nxn identity matrix and the positive definite

diagonal matrix, respectively, and applying o(|W],
S <-4l s
V< -ZTKZ, - ZTK,Z, +|Z,| + % =
B %GHWHZF * %GWé (29)

<-Z'KZ ~Z'K.Z, - %auv”vni P,
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where P=1loW,; +1p.
Then, let us choose the constant ¢ satisfying the
following condition:

. . o4
()<§’<m1n[1(],m,]{2‘m,9-2—’"}, (30)
Where K,,, K,,, and A, are the minimum

eigenvalues of K,, K;, and A, respectively. Hence,
(29) can be represented by

<=2V, +P. 31)

This relation implies that p7, <0 when V, > P/2{.

Accordingly, Z,, Z,, and W are uniformly
ultimately bounded in the following compact set :

Q:{Z‘,ZZ,W

2'2,+77Z, + %“W]]ZF < 5}, (32)
st ¢

where 4,, is a maximum eigenvalue of A. Besides,
the compact set Q can be kept arbitrarily small by
adjusting K,, K, and A. That is, the tracking
error Z, can be made arbitrarily small.

(ii) Define W(r) =y ,+2{V, — P. Solving the first-
order differential equation, the solution of ¥, can be
computed by

V()= (1) + P [ e
’ (33)
+ [ XY (1 dr,

where 0<7,<Vr. From (31), we can know that
Y(r) <0. Therefore,

V() <e 0V (1) +§[l —e i, (34)

Using the fact (1/2,)[E[ <V <@/2y,)|E[’, the
inequality (34) can be rewritten as follows:

”E(t)”z < _}}/_/AL ”E(lo)nz g2 | f?i [1- e~2§(t~fo)].(3 5)

In (35), we can find that ”E(i)"2 increases or
decreases monotonically between the values of
M 2 M
2elE@)| and Zp-
vector E is obtained as (25). Besides, note that from

(35), [IE(t)“w—) Py, /¢ as t— . This completes

So, L, norm of the error

the proof of the theorem.

Remark 1: 1) In the adaptation law (23) for
weighting vectors of the SRWNN uncertainty
observer, o -modification technique [20] is used to
prevent parameter drift. Also, we can use a projection
operator method {21], and e -modification method
[22]) in place of o -modification technique.

2) In the adaptation law (23), the partial derivative
terms ©, , for tuning all weights of the SRWNN can

be evaluated by the backpropagation technique [13].
They can be found in [13].

Remark 2: In [17], the actual dynamics of the
robots with uncertainties was only considered for
designing the robust backstepping controller using
NNs, where NNs were used to approximate the
complicated nonlinear functions including the actual
dynamics of the robot system. In this method, we
cannot examine how much the dynamics of robot
system is influenced by uncertainties. However, in the
proposed method, since the dynamics of the biped
robots expressed by (1) is designed separately by the
nominal values and uncertainties, and SRWNNs are
employed to observe the unknown uncertainties of
dynamics of biped robots, we can establish the
magnitude of the parametric uncertainty to show the
robustness degree of the designed control system in
the simulation procedure (see Table 1).

Remark 3: Compared with the previous control
methods for the biped robot reported in [2-4], the
proposed control method has the following
advantages.

1) In [2] and [3], the SMC technique was applied to
the robust control of the five-link and nine-link biped
robot, respectively. These papers require the upper
bounds of the internal uncertainties and external
disturbances to compute the gains of the sliding
controllers. However, it is difficult to satisfy this
condition in the real bipedal systems because the exact
values of the internal uncertainties and external
disturbances are unavailable to measure or to know in
advance. Therefore, the SMC method cannot be
applied to the robust control of biped robot systems
with the unknown uncertainties and disturbances.
Hence, in the proposed control method, we employ
the intelligent adaptive backstepping controller using
the SRWNN uncertainty observer for the estimation
of the uncertainty term of the bipedal systems.
Accordingly, in our control system, any information
for the model uncertainties and external disturbances
is not needed.

2) In [4], the active force control method is applied
to handle the external disturbance of the five-link
biped robot efficiently. That is, the model
uncertainties are not considered. However, in our
control method, both the model uncertainties and
external disturbances can be considered.
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Table 1. Simulation parameters for the nine-link biped robot.
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m; (Kg) /i (m) d; (m) I;
Nominal Actual Nominal Nominal (Kgm?)
LINK 1 (Right Toe) 0.6 1.6 xcos(t) 0.1077 0.0828 1/6000
LINK 2 (Right Foot) 0.6 2.4 0.05 0.05 1/6000
LINK 3 (Right Leg) 4.550 4.550 xsin(r) 0.502 0.267 0.105
LINK 4 (Right Thigh) 7.630 9.630 0.431 0.247 0.089
LINK 5 (Torso) 49 55 0.827 0.280 2.350
LINK 6 (Left Thigh) 7.630 9.630 0.431 0.247 0.089
LINK 7 (Left Leg) 4.550 9.10 0.502 0.267 0.105
LINK 8 (Left Foot) 0.6 1.2 0.05 0.05 1/6000
LINK 9 (Left Toe) 0.6 0.8 0.1077 0.0828 1/6000

4. COMPUTER SIMULATIONS

In this section, we examine our proposed IABC
system for the tacking control of the nine-link biped
robot shown in Fig. 2. The relative angle and the
driving torque of the nine-link biped robot are defined

as q:[qo q, -+ qg] and T:[TO 7 e 78]7
respectively. Here, the torque 7, at the toes of the

supporting leg is zero because of the existence of one
unpowered degree of freedom [3,5]. This aspect is the
most important characteristic of the locomotion of the
biped robot. Accordingly, it is assumed that each of
the eight joints is driven by each independent motor.
Also, the motion of the biped robot is assumed to be
planned to start walking from the vertical position and

Fig. 2. The nine-link biped robot.

walk steadily for several steps on a flat horizontal
surface.

In this simulation, we derive a new walking pattern
using a gait trajectory proposed in [5] for a stable
walking of the nine-link biped robot. While the
previous walking pattern shown in Fig. 3(a) represents
that two legs gather after one step and this process is
repeated, the proposed walking pattern shown in Fig.
3(b) describes the steady walking similar to the human
walking. The dynamic model and kinematic model
suggested in [3,5] are used in this simulation. Fig. 4
depicts the locomotion mode of the nine-link biped
robot using the proposed walking pattern and the

A ., A,
C o |

(@)
4 YH ﬁ>/\ $/H;
Y W 1
(b)

Fig. 3. The walking pattern of the nine-link robot (a)
the pattern proposed in [2] (b) our proposed
pattern.
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08

BN Y

0.4

0.2

Fig. 4. The desired locomotion mode of the nine-link
biped robot.

kinematic model. The change of the angular position
of each joint to represent tshis walking pattern is
defined as the reference trajectory. And to examine the
robustness of the proposed control method, we
compare the JABC method with the computed torque
control (CTC) method.

Since g, of the biped robot model is the
uncontrollable joint (i.e., 7, =0), our control law is
redefined as follows:

r=M(X)U+C(X,,X,)+G(X,)+F(X,), (36)

where Ue R’ is the vector with components

1 8
u=——— Y (M, 4,,)+C, +G, +F |, (37)
M, |5

U, =-1/(X W)~ KuZu +qa - KZ,IZZ,I - Zl,l' (33)

Here, M,, (P=1,2,..,9) denote the components of
the first row of matrix M(X,) and C,, G, and
F are the first element of the vectors C(X,,X,),
G(X)), and F(X,), respectively. And to compare
the performance of IABC system and CTC system, it
is assumed that the same disturbances and
uncertainties influence the biped robot system. The
initial positions are set to ¢ (0)=g,(0)=1.92,
q,(0)=q,(0)=1.57, and ¢,(0)=0 (h=3,...,6). That
is, the nine-link biped robot is at initially upright
posture. Also, the link masses m, s of the biped robot
are assumed to be uncertain. Especially, it is assumed
that the masses m, and m, have the time-varying
uncertainties, and m,, m7, and m, have about 200%
uncertainties of the nominal values. The parameters of

the nine-link biped robot are shown in Table 1. In

addition, the external disturbances given by

7y =[0.2sin(t) 0.5cos(2t) 0.7sin(3t) 0.6sin(2t)
0.3cos(t) 0.4sin(2t) 0.4sin(t) 0.2cos(t)
0.1sin(6)]"

are injected into each joint of the biped robot. The
control parameters of the IABC system for controlling

the states from ¢, to ¢, are chosen as

K, =diag[700 300 300 500 900 900

900 900],

K, = diag[200 100 100 100 100 100
200 200],

A =diag[0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01],

o =0.001,

and the parameters for the CTC system are taken as

K, =diag[10000 10000 10000 10000

10000 10000 10000 10000],
K, =diag[500 500 500 500 500 500
500 5001],
where K, and K, are the proportional and

derivative gain diagonal matrices, respectively. In the
proposed control system, each SRWNN consists of
the very simple structure: two inputs, two mother
wavelet, one product node, and one output. The initial

values of weights of SRWNNs except d,, and 6,
are given randomly in the range of [-1 1]. d, >0
and 6, are chosen in the range of [0 1] and as 0,

respectively. That is, there are no feedback units
initially. The inaccurate initial tuning parameters of
the SRWNNs are trained optimally by online
parameter tuning methodology. In Figs. 5 and 6, the
actual joint angles of the IABC and the CTC system
and their tracking errors are compared. These figures
reveal that the proposed control system gives the
excellent performance compared with the CTC system
even under the influence of the time-varying
uncertainties and external disturbances. Figs. 7, 8, and
9 show the SRWNN outputs, the L, norms of their

estimated weights and the control torque signals,
respectively. Note that the uncertainty terms (T, (-))
are observed by SRWNNs (T, (), effectively. Besides,

we can see that all signals such as joint angles, control
torques, all weights of SRWNNs in the closed-loop
system are bounded.
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5. CONCLUSIONS

In this paper, a robust control system using IABC
technique for the biped robot with model uncertainties
and external disturbances has been developed. First,
the dynamics of the biped robots with model
uncertainties has been introduced. Second, the robust
control based on SRWNN uncertainty observer law
has been designed for the stable walking control of
biped robots. Third, from Lyapunov stability analysis,
the adaptation laws for all weights of SRWNN have
been derived, which have been used for guaranteeing
that all signals in the closed-loop system are
uniformly ultimately bounded. Finally, from the
simulation results for a nine-link biped robot, it was
shown that the proposed control system has the
excellent tracking performance and the robustness
against model uncertainties and external disturbances.
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