• Title/Summary/Keyword: integrals

Search Result 617, Processing Time 0.023 seconds

Restricted maximum likelihood estimation of a censored random effects panel regression model

  • Lee, Minah;Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.4
    • /
    • pp.371-383
    • /
    • 2019
  • Panel data sets have been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Maximum likelihood (ML) may be the most common statistical method for analyzing panel data models; however, the inference based on the ML estimate will have an inflated Type I error because the ML method tends to give a downwardly biased estimate of variance components when the sample size is small. The under estimation could be severe when data is incomplete. This paper proposes the restricted maximum likelihood (REML) method for a random effects panel data model with a censored dependent variable. Note that the likelihood function of the model is complex in that it includes a multidimensional integral. Many authors proposed to use integral approximation methods for the computation of likelihood function; however, it is well known that integral approximation methods are inadequate for high dimensional integrals in practice. This paper introduces to use the moments of truncated multivariate normal random vector for the calculation of multidimensional integral. In addition, a proper asymptotic standard error of REML estimate is given.

CERTAIN INTEGRATION FORMULAE FOR THE GENERALIZED k-BESSEL FUNCTIONS AND DELEURE HYPER-BESSEL FUNCTION

  • Kim, Yongsup
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.523-532
    • /
    • 2019
  • Integrals involving a finite product of the generalized Bessel functions have recently been studied by Choi et al. [2, 3]. Motivated by these results, we establish certain unified integral formulas involving a finite product of the generalized k-Bessel functions. Also, we consider some integral formulas of the (p, q)-extended Bessel functions $J_{{\nu},p,q}(z)$ and the Delerue hyper-Bessel function which are proved in terms of (p, q)-extended generalized hypergeometric functions, and the generalized Wright hypergeometric functions, respectively.

MAXIMAL FUNCTIONS ALONG TWISTED SURFACES ON PRODUCT DOMAINS

  • Al-Salman, Ahmad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.1003-1019
    • /
    • 2021
  • In this paper, we introduce a class of maximal functions along twisted surfaces in ℝn×ℝm of the form {(𝜙(|v|)u, 𝜑(|u|)v) : (u, v) ∈ ℝn×ℝm}. We prove Lp bounds when the kernels lie in the space Lq (𝕊n-1×𝕊m-1). As a consequence, we establish the Lp boundedness for such class of operators provided that the kernels are in L log L(𝕊n-1×𝕊m-1) or in the Block spaces B0,0q (𝕊n-1×𝕊m-1) (q > 1).

Generalizations of Ramanujan's Integral Associated with Infinite Fourier Cosine Transforms in Terms of Hypergeometric Functions and its Applications

  • Qureshi, Mohammad Idris;Dar, Showkat Ahmad
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.781-795
    • /
    • 2020
  • In this paper, we obtain an analytical solution for an unsolved definite integral RC (m, n) from a 1915 paper of Srinivasa Ramanujan. We obtain our solution using the hypergeometric approach and an infinite series decomposition identity. Also, we give some generalizations of Ramanujan's integral RC (m, n) defined in terms of the ordinary hypergeometric function 2F3 with suitable convergence conditions. Moreover as applications of our result we obtain nine new infinite summation formulas associated with the hypergeometric functions 0F1, 1F2 and 2F3.

ROUGH MAXIMAL SINGULAR INTEGRAL AND MAXIMAL OPERATORS SUPPORTED BY SUBVARIETIES

  • Zhang, Daiqing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.277-303
    • /
    • 2021
  • Under the rough kernels Ω belonging to the block spaces B0,qr (Sn-1) or the radial Grafakos-Stefanov kernels W����(Sn-1) for some r, �� > 1 and q ≤ 0, the boundedness and continuity were proved for two classes of rough maximal singular integrals and maximal operators associated to polynomial mappings on the Triebel-Lizorkin spaces and Besov spaces, complementing some recent boundedness and continuity results in [27, 28], in which the authors established the corresponding results under the conditions that the rough kernels belong to the function class L(log L)α(Sn-1) or the Grafakos-Stefanov class ����(Sn-1) for some α ∈ [0, 1] and �� ∈ (2, ∞).

Analysis of Steady Vortex Rings Using Contour Dynamics Method for Fluid Velocity

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.108-114
    • /
    • 2022
  • Most studies on the shape of the steady vortex ring have been based on the Stokes stream function approach. In this study, the velocity approach is introduced as a trial approach. A contour dynamics method for fluid velocity is used to analyze the Norbury-Fraenkel family of vortex rings. Analytic integration is performed over the logarithmic-singular segment. A system of nonlinear equations for the discretized shape of the vortex core is formulated using the material boundary condition of the core. An additional condition for the velocities of the vortical and impulse centers is introduced to complete the system of equations. Numerical solutions are successfully obtained for the system of nonlinear equations using the iterative scheme. Specifically, the evaluation of the kinetic energy in terms of line integrals is examined closely. The results of the proposed method are compared with those of the stream function approaches. The results show good agreement, and thereby, confirm the validity of the proposed method.

FINITE INTEGRALS ASSOCIATED WITH THE PRODUCT OF ORTHOGONAL POLYNOMIALS AND WRIGHT FUNCTION

  • Khan, Nabiullah;Khan, Mohammad Iqbal;Khan, Owais
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.597-612
    • /
    • 2021
  • Several useful and interesting extensions of the various special functions have been introduced by many authors during the last few decades. Various integral formulas associated with Wright function have been studied and a noteworthy amount of work have found in literature. The principal object of the present paper is to evaluate finite integral formulas containing the product of orthogonal polynomials with generalized Wright function. These integral formulas are expressed in terms of Srivastava and Daoust function. Some interesting particular cases are obtained from the main results by specialising the suitable values of the parameters involved.

p-Version Finite Element Model of Cracked Plates Including Shear Deformation under Flexural Behavior (휨거동을 받는 균열판의 전단변형을 고려한 p-Version 유한요소모델)

  • Lee, C.G.;K.S.Woo;Shin, Y.S.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.16-23
    • /
    • 1993
  • The new p-version crack model is proposed to estimate the bending stress intensity factors of the thick cracked plate under flexure. The proposed model is based on high order theory and $C^{\circ}$-plate element including shear deformation. The displacements fields are defined by integrals of Legerdre polynomials which can be classified into three groups such as basic mode, side mode and internal mode. The computer implementation allows arbitrary variations of p-level up to a maximum value of 10. The bending stress intensity factors are computed by virtual crack extention approach. The effects of ratios of thickness to crack length(h/a), crack length to width(a/W) and boundary conditions are investigated. Very good agreement with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF

SVN-Ostrowski Type Inequalities for (α, β, γ, δ) -Convex Functions

  • Maria Khan;Asif Raza Khan;Ali Hassan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.85-94
    • /
    • 2024
  • In this paper, we present the very first time the generalized notion of (α, β, γ, δ) - convex (concave) function in mixed kind, which is the generalization of (α, β) - convex (concave) functions in 1st and 2nd kind, (s, r) - convex (concave) functions in mixed kind, s - convex (concave) functions in 1st and 2nd kind, p - convex (concave) functions, quasi convex(concave) functions and the class of convex (concave) functions. We would like to state the well-known Ostrowski inequality via SVN-Riemann Integrals for (α, β, γ, δ) - convex (concave) function in mixed kind. Moreover we establish some SVN-Ostrowski type inequalities for the class of functions whose derivatives in absolute values at certain powers are (α, β, γ, δ)-convex (concave) functions in mixed kind by using different techniques including Hölder's inequality and power mean inequality. Also, various established results would be captured as special cases with respect to convexity of function.

Nodal method for handling irregularly deformed geometries in hexagonal lattice cores

  • Seongchan Kim;Han Gyu Joo;Hyun Chul Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.772-784
    • /
    • 2024
  • The hexagonal nodal code RENUS has been enhanced to handle irregularly deformed hexagonal assemblies. The underlying RENUS methods involving triangle-based polynomial expansion nodal (T-PEN) and corner point balance (CPB) were extended in a way to use line and surface integrals of polynomials in a deformed hexagonal geometry. The nodal calculation is accelerated by the coarse mesh finite difference (CMFD) formulation extended to unstructured geometry. The accuracy of the unstructured nodal solution was evaluated for a group of 2D SFR core problems in which the assembly corner points are arbitrarily displaced. The RENUS results for the change in nuclear characteristics resulting from fuel deformation were compared with those of the reference McCARD Monte Carlo code. It turned out that the two solutions agree within 18 pcm in reactivity change and 0.46% in assembly power distribution change. These results demonstrate that the proposed unstructured nodal method can accurately model heterogeneous thermal expansion in hexagonal fueled cores.