DOI QR코드

DOI QR Code

MAXIMAL FUNCTIONS ALONG TWISTED SURFACES ON PRODUCT DOMAINS

  • Al-Salman, Ahmad (Department of Mathematics Sultan Qaboos University Sultanate of Oman and Department of Mathematics Yarmouk University)
  • Received : 2020.09.12
  • Accepted : 2021.02.18
  • Published : 2021.07.31

Abstract

In this paper, we introduce a class of maximal functions along twisted surfaces in ℝn×ℝm of the form {(𝜙(|v|)u, 𝜑(|u|)v) : (u, v) ∈ ℝn×ℝm}. We prove Lp bounds when the kernels lie in the space Lq (𝕊n-1×𝕊m-1). As a consequence, we establish the Lp boundedness for such class of operators provided that the kernels are in L log L(𝕊n-1×𝕊m-1) or in the Block spaces B0,0q (𝕊n-1×𝕊m-1) (q > 1).

Keywords

References

  1. H. Al-Qassem and Y. Pan, Lp boundedness for singular integrals with rough kernels on product domains, Hokkaido Math. J. 31 (2002), no. 3, 555-613. https://doi.org/10.14492/hokmj/1350911903
  2. A. Al-Salman, Maximal operators with rough kernels on product domains, J. Math. Anal. Appl. 311 (2005), no. 1, 338-351. https://doi.org/10.1016/j.jmaa.2005.02.048
  3. A. Al-Salman, Maximal functions along surfaces on product domains, Anal. Math. 34 (2008), no. 3, 163-175. https://doi.org/10.1007/s10476-008-0301-8
  4. A. Al-Salman, Singular integral operators on product domains along twisted surfaces, Front. Math. China 16 (2021), no. 1, 13-28. https://doi.org/10.1007/s11464-021-0911-z
  5. A. Al-Salman and H. Al-Qassem, Integral operators of Marcinkiewicz type, J. Integral Equations Appl. 14 (2002), no. 4, 343-354. https://doi.org/10.1216/jiea/1181074927
  6. A. Al-Salman and H. Al-Qassem, Rough singular integrals on product spaces, Int. J. Math. Math. Sci. 2004 (2004), no. 65-68, 3671-3684. https://doi.org/10.1155/S0161171204312342
  7. A. Al-Salman, H. Al-Qassem, and Y. Pan, Singular integrals on product domains, Indiana Univ. Math. J. 55 (2006), no. 1, 369-387. https://doi.org/10.1512/iumj.2006.55.2626
  8. A. Al-Salman and Y. Pan, Singular integrals with rough kernels in L log L(Sn-1), J. London Math. Soc. (2) 66 (2002), no. 1, 153-174. https://doi.org/10.1112/S0024610702003241
  9. J. Chen, D. Fan, and Y. Ying, Rough Marcinkiewicz integrals with L(log+ L)2 kernels on product spaces, Adv. Math. (China) 30 (2001), no. 2, 179-181. https://doi.org/10.3969/j.issn.1000-0917.2001.02.012
  10. L.-K. Chen and H. Lin, A maximal operator related to a class of singular integrals, Illinois J. Math. 34 (1990), no. 1, 120-126. http://projecteuclid.org/euclid.ijm/1255988497 https://doi.org/10.1215/ijm/1255988497
  11. Y. Choi, Marcinkiewicz integrals with rough homogeneous kernels of degree zero in product domains, J. Math. Anal. Appl. 261 (2001), no. 1, 53-60. https://doi.org/10.1006/jmaa.2001.7465
  12. Y. Ding, A note on a class of rough maximal operators on product domains, J. Math. Anal. Appl. 232 (1999), no. 1, 222-228. https://doi.org/10.1006/jmaa.1998.6232
  13. J. Duoandikoetxea, Multiple singular integrals and maximal functions along hypersurfaces, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 185-206. https://doi.org/10.5802/aif.1073
  14. J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), no. 3, 541-561. https://doi.org/10.1007/BF01388746
  15. D. Fan and Y. Pan, Singular integral operators with rough kernels supported by subvarieties, Amer. J. Math. 119 (1997), no. 4, 799-839. https://doi.org/10.1353/ajm.1997.0024
  16. D. Fan and Y. Pan, A singular integral operator with rough kernel, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3695-3703. https://doi.org/10.1090/S0002-9939-97-04111-7
  17. R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. in Math. 45 (1982), no. 2, 117-143. https://doi.org/10.1016/S0001-8708(82)80001-7
  18. Y. S. Jiang and S. Z. Lu, A class of singular integral operators with rough kernel on product domains, Hokkaido Math. J. 24 (1995), no. 1, 1-7. https://doi.org/10.14492/hokmj/1380892533
  19. M. Keitoku and E. Sato, Block spaces on the unit sphere in Rn, Proc. Amer. Math. Soc. 119 (1993), no. 2, 453-455. https://doi.org/10.2307/2159928
  20. E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993.