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p—Version Finite Element Model of Cracked Plates
Including Shear Deformation under Flexural Behavior
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ABSTRACT

The new p-version crack model is proposed to estimate the bending stress intensity factors of
the thick cracked plate under flexure. The proposed model is based on high order theory and
C°-plate element including shear deformation. The displacements fields are defined by integrals
of Legerdre polynomials which can be classified into three groups such as basic mode, side
mode and internal mode. The computer implementation allows arbitrary variations of p-level
up to a maximum value of 10. The bending stress intensity factors are computed by virtual
crack extention approach. The effects of ratios of thickness to crack length(h/a), crack length
to width{a/W) and boundary conditions are investigated. Very good agreement with the
existing solution in the literature are shown for the uncracked plate as well as the cracked
plate.

1. INTRODUCTION

One of the basic requirements for the strength analysis of plates containing flaws or cracks
is the knowledge of the singular character of the stress field in the neighborhood of the point
at the crack tip. The stress intensity factors which are in fact the strength of the stress
singularities at crack tips are applied to predict the static strength of cracked bodies by
Irwin[1] for plane extension, symmetric with respect to the crack. The stress intensity factors
have been shown to control the rate of crack propagation under cyclic loading in such
situations. Several investigators have discussed the nature of the local stresses around a sharp
crack in a thin plate subjected to out-of-plane bending loads. Based on the Poisson-Kirchhoff
theory of thin plate and the technique of Fadle eigenfunction expansion, Williams[2] found that
the elastic bending stresses near the tip of a semi-infinite crack vary as the inverse square
root of the radial distance from the crack front. His results were not complete in that the
strength or magnitude of the local stresses was left undetermined. Sih et all3] cleared the
way for finding the coefficients in the eigen function exoansions by application of the theory
of comrlex functions. However, the results in [2-3] were obtained from the classical
fourth-order theory of thin plates, the edge conditions at the crack surfaces are satisfied only
in an epproximate manner in that the three physically natural boundary conditions of
prescribing bending moment, twisting moment, and transverse shear stress are replace by two
conditions. Owing to such a replacement, the stress distribution in the immediate neighborhood
of the crack edges will naturally be affected and will not be accurate.
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To overcome that aforementioned shortcoming, Knowles and Wang{4] used Reissner’s
sixth-orcder plate theory to satisfy all the physically natural boundary conditions along the
crack edges with the help of singular integral equations. However, the extension of the method
to cracked plates with finite plate thickness does not appear to be tractable. For the
examination of the effect of plate thickness, Hartranft and Sthl5] put forward higher order
theories that included the effect of transverse shear deformations and essentially solved the
problem of infinite plates subjected to uniform moment. Murthy et al [6] used Reissner’s plate
theory and applied collocation and succesive integration methods to satisfy the boundary
conditions for a finite plate with a through crack.

The associated numerical difficulties led them to conclude that the finite element method is
better suited for such problems. Wilson and Thompson[7] used h-version of the finite element
method to compute the SIF for the through-the-thickness crack in a plate under flexure. They
used a large number of 3-node triangular C!-elements(actually 257 and 305 node models) and
computecd the value of SIF using the direct method. Hilton[8] used 48 twenty-noded three
dimensional isoparametric elements including special singularity element(279 node model) to
compute a SIF. Yagawa et al[9] used a superposition method of analytical and finite element
solutions on the basis of 36 eight-noded isoparametric elements(133 node model) together with
the reduced integration technique. Alwar et al[10] used 110 three dimensional quadratic
isoparametric elements incluiding degenerate triangular quarter-point prism elements at the
crack tip region to model one eighth of the plate and computed SIF by COD method. The
results presented by earlier workers(Hilton and Yagawa) for finite plate under uniform
moments differ singnificantly from the results by Alwar. Alwar indicated that the difference
may be due to the coarseness of the mesh used by those. Chen et al[11] presented the
hybrid-displacement singular element model based on the Kirchhoff plate theory for the
bending analysis of thin cracked infinite plate and the transverse pressure analysis of thin
finite cracked plate with various boundary condition. Kang et al.[12] used 35 hybrid Mongrel
elements, which is special crack tip element, for infinite cracked plate under bending and finite
thin plate under transverse pressure.

Since the singularity at the through crack corner of finite plate subjected to various load and
boundary condition is unresolved issue, the computation of SIF of plate is very interesting
problem. In this paper, the LEFM analysis of plates subjected to out-of-plane loading is
considered using p-version of the finite element method. The superiority of the P-version of
the finite element method in LEFM computations was demonstrated by Methall3], Basul14],
Wool15]. It was shown by numerical experimentations and analytical proof(16] that the rate of
convergence of p-extension is twice the rate of h-extension in the finite element modeling of
plane stress/strain problems with sharp cracks when the number of degrees of freedom is
increased by uniform or quasi-uniformm mesh refinement. The objective of this syudy is to
determine the SIF for finite plate with various boundary condition and to investigate the
variation of the same across the plate thickness under distributed edge moments and
transverse pressures by the p-version crack model based on virtual crack extension method
and integrals of Legendre polynomials.

2. STRESS FIELD NEAR CRACK TIP AND STRESS INTENSITY FACTORS

Irwin[1] obtained the form of the elastic stress distribution in the vicinity of a crack tip in
extensional problems. Williams[2] extended his analysis to thin plates subjected to bending out
of the plane. In each case it is shown that the significant stresses in the vicinity of the crack
tip are those associated with the singularity of stress of the order r'w, where r is radial
distance from the crack tip. Moreover, the distribution of stress in each, extension or bending,
is unique; ie., its functional form in terms of coodinates measured from the crack tip is
always the same. Hence, for bending, Williams’ results will be modified to define moment
intensity factors in bending in a manner consistent with Irwin’s definitions.
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where 8 is a coordinate perpendicular to the middle plane of the plate, G and h are asscciated
with shear modulus of elasticity and thickness of a plate, respectively.

When the crack is tilted at an angle B with reference to the plane about which a bending
moment of magnitude M, is applied, Sih[3] and Hartranft[5] have provided the moment
intensity factors shown in Egs.(2)-{4).

K; = ¢(1)M,Vasin? )
Kg = ¥(1)M asinBcosp (3)
Kp = - (fv)h Q(1)M, ¥V asinpcosp 4

where the functions (1), ¥(1) and Q(1) are computed numerically from integral equations.
Their values are function of A/av 10 for different Poisson’s ratio. In case of mode I the
moment intensity factor K; can be modified to the bending stress intensity factor k; under
the plain strain condition such that

k1 = d’(l)cb‘\/_& (5)
where 0;,=-’%—M,, ©®)

3. INTEGRAL OF LEGENDRE POLYNOMIALS

The general form of integral of Legendre polynomials are defined over the standard domain

such that ;
. 4
Fin(®) = 2L [ oyt @
where
PAO = —i d—t,uz 1 €)
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where { = 0,1, 2,- -
Foi a standard quadrilateral domain, with ¢, 7 (-1<¢<1 and -1<9<1) as the coordinate
of a poirt, the shape functions are built from the 1-D shape functions F;(&) as follows [15);

1. The four vertex modes are Fy(&) - Fy(n) with 4, j =1, 2.

2. The side modes van be obtained by multiplying F,(¢) with (n+1) and (n-1) for
sides, m = *1 and F,(n) with (£+1) and (&-1) for the sides & = =1 . Here p>2
is the order of the shape function, ie, p=2 indicates the quadratic shape functions.

3. The internal modes are valid for p=4 only, and can be obtained by taking the product
F{&) « Fj(n) so that i+j=p, and both { and j are greater than or equal to 2.

4. COMPUTATION OF STRESS INTENSITY FACTORS

The finite element method has been used by a number of investigators to determine elastic
stress intensity factors for cracked bodies. The characteristic elastic square root singularity has
been represented by the use of virtual crack extension method in this work. For the virtual
crack extension method, it may be shown in the absence of body forces.

[F6(s) - 3A() ds = - 1u) T~ ALK~ {u) ©
0 2

where G(s) is Griffith’s energy, and a function of position s along the crack front, a is the
length of the crack front, and {u} is the vector of nodal point displacements found from the
finite element computation. The change in the stiffness matrix A4[Kl, for a given virtual crack
extensiori may be written as a forward difference, namely

ALK} = [Klowa - [Kla (10)

Consider a crack of length a which advances by an incremental amount 8a, thereby
causing a release of strain energy of amount 8U. Thus the incremental crack surface 35A(s)
for axisymmetric bodies is defined by;

3A(s) = h(a + 8a) - ha (1D

where h is the thickness of plate.
Therefore, the strain energy release rate G(s) for axisymmetric cracked bodies can be
expressed as;

G(s) = =5k (12)

then the stress intensity factors are directly related to the value of G(s) caused by a crack
extension in the appropriate mode. Hratranft and Sih{5] have provided k; expressions under
plane strain condition including the effect of the plate thickness at the upper surface of the
cracked plate (8=h/2). The relationship between k; and G for plane strain condition is
expressed by ;

k1=
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in which G is the strain energy release rates under mode I action, v is Foisson’s ratio and
E is Young’s modulus. However, since the quantity G(s) is very sensitive to the crack
length increment 3a, the sensitivity test was investigated between G(s) and 3a. From this,

3a was adopted by 10 “a.

5. NUMERICAL RESULTS

5.1 A centrally cracked square plate under uniform edge moments

The first example is a centrally cracked square plate subjected to uniform edge normal
bending moments. Because of symmetry, only a quarter of the structure is discretized into 2x2
mesh shown in Fig.l. The geometric and mechanical data of the problem are given by the
length of square plate W=10, E=1 x10° v=03 and constant normal bending moment M, per

unit length. The p-version results of the non-dimensional bending stress intensity factor ¢(1)
defined by Eq.(5) have been compared with 3-D finite element solutions by Alwar{10] and
theoretical solution of the infinite cracked plates obtained by Hartranft and Sih[5] when
a/W=0.03. It is noted that the p-version 4-elemet model with p=8, in case of the infinite
plate, which is almost equal to Alwar’s analysis shows a good comparision with Hartranft's
theoretical solution within 4% relative errors. The non-dimensional bending stress intensity
factors ¢(1) for the finite plate with respect to the ratio of a/W have been shown in Fig.2 as
the ratio of h/2a varies. The effects of thickness of the finite cracked plate have been tested
with the same p-version model in Fig.3. The p-version finite element model is very close to
3-D analysis by Alwarl[l0]}, however, 2-D analysis by Yagawal[9] gives large difference in
reference with both p-version model and Alwar’s solution when a/W=05. In Fig.4, the effect
of Poisson’s ratio has been investigated as the thickness is increased. As we aware of it from
this figure, the non-dimensional bending stress intensity factors have been affected by the
variation of Poisson’s ratio. Unfortunately, there are not published papers in literature up to
this stage.
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5.2 A centrally cracked square plate under uniform pressures

SS

This example has been tested the effect of bending stress intensity factors with different
crack length and boundary conditons in case of a centrally cracked square plate under uniform
transverse loading p,. The finite element mesh and geometric/mecanical data are the same as
a centrally cracked square plate under edge moments. The bending stress intensity factors

with respect to crack length for simply supported(SS) and clamped condition(CC) have been
investigated in Fig.5 where the stress intensity factotrs were normalized by the reference value
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stress intensity factors with
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Fig.5 Normalized bending stress intensity factors
vs a/W ratio.
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of bending stress intensity factor of a/W=05 with SS condition and this problem was also

solved under the condition of thin cracked plate such as W/h=30. The p-version finite element
model shows a good comparison with the hybrid displacement singular element approach by
Chenf11] and the hybrid mongrel element model by Kangl12], respectively. It is also noted that
the bending stress intensity factor increases to maximum value at a certain ratio of a/W and
decreases even when crack length is growing. As we expected, the effect of Poisson’s ratio is
very large as well as the a centrally cracked plate under uniform edge moments. However, it
is observed that Poisson’s ratio has effect on the non-dimensional bending stress intensity
factor in SS boundary condition rather than in CC boundary condition. The configuration of
the square cracked plate with two opposite edges simply supported and the other two edges
free is shown in Fig.7 where the loading condition and mechanical properies are unchaged like
previous problem. The solutions obtained by 4-element p-version model with p=8 are in good
accordance with those by Sosa et al[17]. In this case, the non-dimensional bending stress
intensity factor grows rapidly as the crack length increases.
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Fig.7 Configuration of cracked square plate with Fig.8 Growth of normalized bending stress
two opposite edges simply supported and with /W ratio
the cther edges free

6. SUMMARY AND CONCLUSIONS

The new p-version crack model has been proposed that is based on Reissner-Mindlin
theory, integral of Legendre polynomials and virtual crack extension method. Also, this model
is under the scope of theory of small scale yielding. Throughout treating examples, the cracked
square plates have been investigated with respect to effects of size of finite plate, Poisson’s
ratio, loading conditions of uniform edge moments and transverse pressures, various boundary
conditions, and variation of thickness. The physical domains are modeled by only four
C°-hierarchical plate elemens with p-level=8 to get the same levels of accuracy from the
special singular finite element solutions in literatures. From this study, it is concluded that the
proposed crack model shows superiar performance to the exsisting crack model on the basis of
hybrid singular elements in the sense of modeling simplicity, accuracy and a tremendous
savings in CPU and user’s time. Also, it is apparent that p-version crack model is very
suitable for LEFM analysis irrespective of loadings and geometric/mechanical properties.
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